СОДЕРЖАНИЕ

MO	HIA	ж си	СТЕМЫ	4
	1.	Треб	ования к параметрам окружающей среды	4
		1.1	Требования к помещению	4
		1.2	Транспортировка оборудования и выбор места для монтажа	5
		1.3	Распаковка	7
		1.4	Размещение системы	9
		1.5	Блок-схема установки системы	10
	2.	Сбор	ока системы	11
		2.1	Структура устройства	11
		2.2	Установка блоков расширения	13
		2.3	Подключение блоков расширения	
			(Плоский соединительный кабель - FCC)	14
		2.4	Подключение системы ввода/вывода (I/O)	17
		2.5	Подключение к локальной вычислительной сети (LAN)	19
	3.	Уста	новка системы электропитания	20
		3.1	Блок питания PSU-A	20
		3.2	Блок питания PSU-D	24
		3.3	Потребляемая мощность	32
		3.4	Емкость аккумуляторной батареи	34
		3.5	Установка выпрямителя	35
		3.6	Заземление	38
	4.	Уста	новка плат	59
		4.1	Плата СРМ2	59
		4.2	Плата СРМ	64
		4.3	Плата DTRU	68
		4.4	Плата EXPU	69
		4.5	Плата ІОТИ	71
		4.6	Плата ASLC	73
		4.7	Плата ASLC-MW	77
		4.8	Плата DSLC-LGP	81
		4.9	Плата DSLC-LKD	86
		4.10	Плата DSLC-LKDU	90
		4.11	Плата BRIC	91
		4.12	Плата АРТС	98
		4.13	Плата ALTC	102

	4.14	Плата ITGC	108
	4.15	Плата DNIC	115
	4.16	Плата RMFC	125
	4.17	Плата VPM	128
	4.18	Плата АРМ	132
	4.19	Плата WTIC	136
	4.20	Устройство EPU	147
	4.20	Модуль PFTU	152
5.	Назн	ачение контактов, применяемых в системе	154
	5.1	Назначение сигналов плоских кабелей (EXPU – EMB)	154
	5.2	ММВ: Таблица сигналов разъема СРМ0-U	155
	5.3	ММВ: Таблица сигналов разъема CPM0-L	157
	5.4	ММВ: Таблица сигналов разъема СРМ1-U	159
	5.5	ММВ: Таблица сигналов разъема СРМ1- L	161
	5.6	ММВ: Таблица сигналов разъемов LB1-LB10	163
	5.7	Назначение контактов разъема (PSU-A/PSU-D0: верхняя сторона)	164
	5.8	MMB: Назначение контактов разъема (PSU-A/PSU-D1: нижняя сторона)	.165
	5.9	ММВ: Назначение контактов разъема RGU0 (верхняя сторона)	166
	5.10	ММВ: Назначение контактов разъема RGU1 (нижняя сторона)	167
	5.11	CN 8 MMB – Назначение контактов модуля IOTU	168
	5.12	CN 9 MMB – Назначение контактов модуля CLKU	169
	5.13	CN U5 MMB – Назначение сигналов модуля FDKU	170
	5.14	EMB1: LB1 – LB12 назначение сигналов	171
	5.15	EMB1: Назначение контактов FCC	172
	5.16	EMB2: LB1 – LB12 назначение сигналов	174
	5.17	EMB2: PSU0 назначение контактов (PSU-A/PSU-D0:	
		верхняя сторона	176
	5.18	EMB2: PSU1 назначение контактов (PSU-A/PSU-D1:	
		нижняя сторона	177
	5.19	EMB2: RGU0 назначение контактов (верхняя сторона)	178
	5.20	EMB2: RGU1 назначение контактов (нижняя сторона)	179
	5.21	EMB2: назначение контактов FCC	180
	5.22	Назначение портов	183
6.	Инст	алляция программы	184
	6.1	Общие сведения	184
	6.2	Первоначальный этап инсталляции программы	184
	6.3	Процедура входа в систему	188

	6.4	Ввод информации о конфигурации LAN	. 192
	6.5	Установка режима работы сети (установка перемычек)	. 196
	6.6	Проверка информации о конфигурации сети в РС	. 197
	6.7	Установка более новой версии программы	. 199
	6.8	Использование программы FTP DOS: режим OFF-LINE	. 202
	6.9	Форматирование флэш-диска	. 205
	6.10	Перезагрузка системы и автоматическая генерация данных	. 206
7.	Спец	цификации и характеристики различного типа оборудования и сигналов	. 208
	7.1	Характеристики каждой платы	. 208
	7.2	Условия окружающей среды	. 214
	7.3	Сигналы и типы терминалов	. 214
	7.4	Абонентское оборудование	. 214
	7.5	Системные тональные сигналы	. 215
	7.6	Спецификация интерфейсов терминалов	. 218
	7.7	Линейная сигнализация	. 221
	7.8	Спецификация линий центрального офиса (С.О.)	. 222
	7.9	Спецификация линий шлейфного набора (L/D)	. 224
	7.10	Спецификация линий "наушник и микрофон (Е&М)	. 226
	7.11	Спецификация линий полевого телефона (R/D)	. 230
	7.12	Спецификация регистровых сигналов	. 232
	7.13	Спецификация сигналов цифровой линии (DNIC-E1)	. 237

МОНТАЖ СИСТЕМЫ

1. Требования к параметрам окружающей среды.

1.1 Требования к помещению.

Поскольку данная система состоит из таких компонентов, как транзисторы, ИС и БИС, то она является чувствительной к параметрам окружающей среды, включая температуру, влажность, наличие электрических полей, и при ее размещении должны тщательно учитываться перечисленные параметры.

ө Температура и влажность

Классификация		Нормальные условия	Оптимальные условия
Температура	Рабочая	0 ~ 40°C	20 ~ 25C
температура	Хранения	-15 ~ 70°C	
Влажность	Рабочая	20 ~ 80 %	25 ~ 70 %
DJIAMIOOTB	Хранения	10 ~ 95 %	

ө Прочие условия

- Если оборудование устанавливается в помещении, где существующие электрические наводки могут оказать влияние на его функционирование, то такое помещение должно быть полностью экранировано.
- Оборудование может функционировать при влажности 20% ~ 80%, однако для обеспечения требуемой надежности, рекомендуется поддерживать влажность воздуха менее 60%.
- Помещение должно иметь хорошую вентиляцию.
- Пол в помещении должен иметь антистатическое покрытие.
- Оборудование и пульт оператора не должны подвергаться воздействию прямых солнечных лучей.
- Оборудование не должно монтироваться около внешней стены, а зазор с внутренней стеной должен составлять минимум 75 см.
- Если аккумуляторная батарея и остальное оборудование устанавливаются в одном и том же помещении, то пары, выделяемые батареей должен удаляться из помещения с помощью системы принудительной вентиляции, а сама

батарея должна быть оборудована крышкой, в которой используются паропоглощающие пробковые элементы (за исключением случаев, когда батарея является герметичной).

- Для того чтобы монтаж, обслуживание и ремонт оборудования можно было производить без затруднений, при монтаже оборудования должен быть предусмотрен соответствующее расстояние до потолка помещения.
- Вертикальная нагрузочная способность помещения, должна быть в 1,5 раза выше, чем суммарная вертикальная нагрузка установленного в этом помещении оборудования.

1.2 Транспортировка оборудования и выбор места для монтажа.

Доставка оборудования должна производиться с максимальной осторожностью для предотвращения повреждений и поломок. Поскольку основное оборудование является чрезвычайно сложным в своей конфигурации и изготовлено по высокотехнологичным спецификациям, несоответствующее обращение с оборудованием во время транспортировки может сказаться на эффективности его работы, потребовать дополнительного времени монтажа, вызванного поломкой компонентов оборудования, и их последующего ремонта или замены, что приведет к задержке сдачи оборудования в эксплуатацию.

Транспортировка оборудования.

• Разгрузка.

Оборудование, упакованное поставщиком, должно разгружаться на предварительно выбранном месте.

Время, место и процедура разгрузки, должны быть заранее сообщены поставщику.

Компоненты оборудования должны разгружаться на ровную поверхность и не должны ставиться друг на друга.

При разгрузке компоненты оборудования не должны подвергаться резким воздействиям (ударам и пр.).

Упакованные компоненты не должны разгружаться вверх ногами.

 При доставке оборудования на место установки, необходимо тщательно выбрать маршрут доставки с учетом веса и габаритных размеров оборудования. Необходимо проверить ширину и высоту проходов с тем, чтобы удостовериться в том, что оборудование можно без затруднений

транспортировать по этим проходам без необходимости его распаковки.

- Доставка оборудования на место установки должна производиться в упакованном виде, однако, если на месте установки недостаточно места для распаковки оборудования, оно может быть распаковано снаружи, непосредственно перед его вносом в помещение.
- При необходимости передвинуть оборудование (например, в узком проходе), для предотвращения повреждения пола, используйте конвейерные ролики, деревянные поддоны или матрац с опилками.
- Что касается оборудования, разгруженного перед входом в здание, его следует занести внутрь, используя при необходимости коридоры (в случае длинномерных предметов, например, полок). В этом случае нужно удостовериться, что оборудование не будет погнуто и следует задействовать не менее четырех рабочих для того, чтобы не погнуть элементы оборудования.
- При транспортировке оборудования на тележке, его следует размещать в центре тележки и перевозить с крайней осторожностью.
- Если помещение, в котором будет монтироваться оборудование, имеет люк на лестницу, то оборудование должно подниматься в помещение с помощью талей или лебедок. В этом случае необходимо проявлять осторожность с тем, чтобы не допустить повреждения люка или подъемного оборудования.
- Если здание, где будет устанавливаться оборудование, снабжено грузовым лифтом, то оборудование можно транспортировать с использованием лифта, но при этом соблюдать осторожность с тем, чтобы не повредить лифт и оборудование.

1.3 Распаковка.

Символ	Описание	Символ	Описание
↑ UP	Маркировка верха контейнера	HEAVY WEIGHT THIS END	Тяжелая сторона
FRAGILE HANDLE WITH CARE	Не ударять	NO TURN	Не бросать
KEEP DRY	Не мочить	CENTER OF BALANCE	Центр тяжести
USE NO HOOKS	Не подвешивать	OPEN HERE	Открывать упаковку здесь
SLING HERE	Подвешивать здесь		

- Распаковка груза должна производиться после его доставки на место установки для предотвращения его повреждения.
- Элементы оборудования, доставленные к месту установки, должны распаковываться в отдельном от монтажных и других работ месте.
- При разрезании стальных полос, которыми обмотана упаковка, используйте защитные очки и перчатки.
- При распаковке оборудования, используйте гвоздодер, после чего снимите крышку, удалите боковины и ребра жесткости.
- Оборудование должно устанавливаться на погрузчик осторожно, а упаковка должна удаляться, когда низ оборудования стоит на полу.
- После удаления внешней упаковки, удалите внутреннюю упаковку, за исключением влаго- и пылезащитной упаковки, и поместите оборудование в место, удобное для его последующего монтажа и сборки.
- Не используйте слишком сильные рычаги для распаковки оборудования, так как слишком сильное приложенное усилие, может привести к повреждению или деформации оборудования.

Учрежденческо-производственная АТС

STAREX-CS

- Внутренняя упаковка (влаго- и пылезащитная) не должна удаляться до тех пор, пока оборудование не будет собрано и смонтировано. Если упаковка кажется поврежденной, то ее надо снять, проверить, и вновь упаковать оборудование.
- Проверьте, соответствует ли оборудование, указанное на упаковке, заказанному оборудованию и проверьте, не повреждено ли упакованное оборудование.
- После удаления таких опасных элементов упаковки, как, например, гвозди, храните упаковочные материалы должным образом в отдельном месте и предохраняйте их от разворовывания или пожара.
- При обращении с оборудованием до его распаковки, соблюдайте необходимые меры предосторожности.
- Меры предосторожности при распаковке.
 - > Распаковка должна производиться под наблюдением ответственного лица.
 - ➤ Начинайте распаковку с отметки «OPEN HERE» (открывать здесь).
 - При использовании рычага или гвоздодера, убедитесь в целостности внутренней упаковки.
 - Проверьте количество элементов оборудования внутри каждого вскрытого деревянного контейнера.
- Хранение оборудования.
 - ➤ Снаружи.

Храните упакованное оборудование должным образом и в соответствующем месте.

Храните упакованное оборудование вблизи от входа в здание.

При разгрузке упакованного оборудования предусмотрите свободное пространство для подъезда грузовика или для распаковки.

Избегайте ветреных и загрязненных мест.

Храните оборудование на ровной поверхности.

➤ Внутри.

Храните распакованное оборудование вблизи места его установки.

- ө Меры предосторожности.
 - Предохраняйте вход в помещение, стены и колонны от повреждений.
 - Для перемещения тяжелых элементов оборудования после распаковки, используйте нижний поддон упаковки.
 - Транспортировка оборудования должна осуществляться под наблюдением ответственного лица. В противном случае рабочие могут повредить оборудование в процессе его транспортировки.
 - Оборудование должно заноситься в здание через главный вход и ни в коем

случае не через окна или узкие двери.

1.4 Размещение системы.

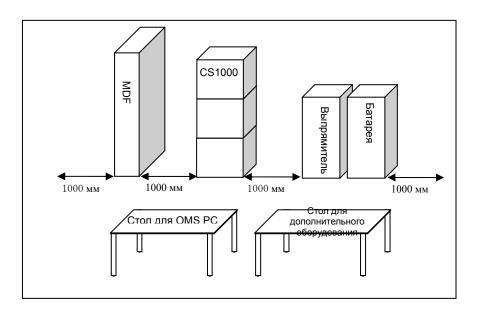
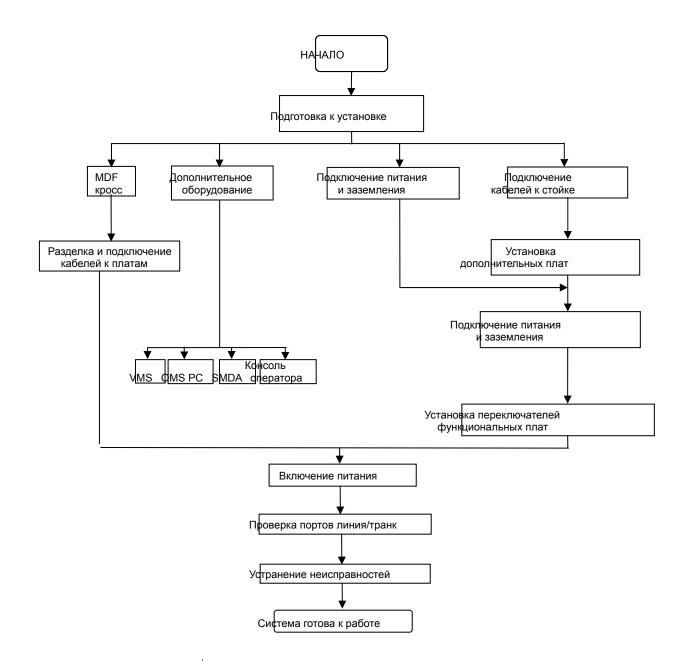
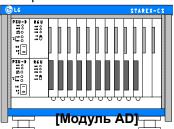
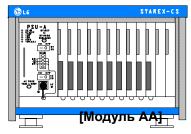



Рисунок 1. Обеспечьте достаточные проходы для обслуживания и ремонта системы.

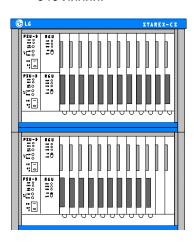
1.5 Блок-схема установки системы.

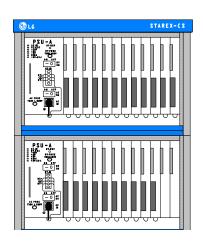
2. Сборка системы.


2.1 Структура устройства.

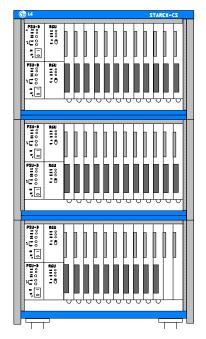

в **AA/AD (Основная система)** – Способна поддерживать до 228 линий.

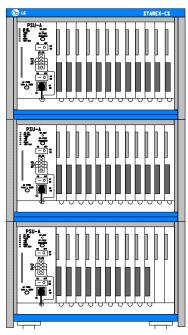
Система AA: Комплектуется модулем PSU-A, питание осуществляется от источника переменного тока.


Система AD: Комплектуется основным и резервным модулем PSU-D, питание осуществляется от источника постоянного тока.


NF/TB-BS встроена в заднюю часть системы, которая подключается к внешнему выпрямителю.

 в ВА/ВD (Основная система + Блок расширения 1) – Способна поддерживать до 640 линий.


[Система BD]


[Система ВА]

Учрежденческо-производственная АТС

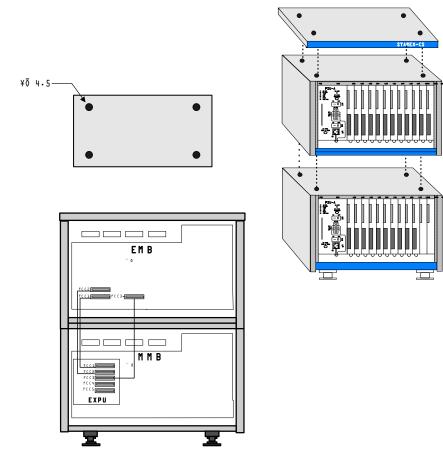
STAREX-CS

в СА/CD (Основная Система + Блок расширения 1 + Блок расширения 2) –

[Система CD]

[Система СА]

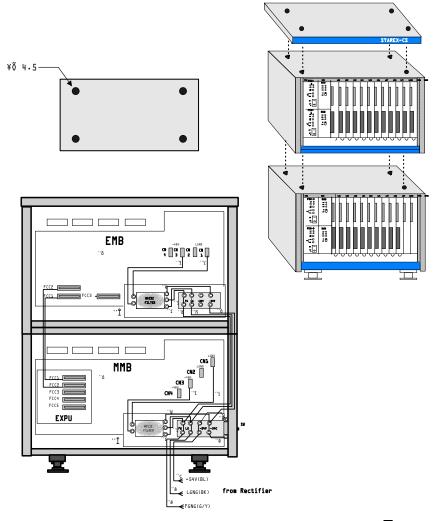
Серийный номер каждой конфигурации системы


1 1 21 1			
Конфигурация системы	Серийный номер	Описание конфигурации системы	
AD	MBFN-RA0004-00	Одноблочная система, питание от постоянного тока	
BD	MBFN-RA0005-00	Двухблочная система, питание от постоянного тока	
CD	MBFN-RA0006-00	Трехблочная система, питание от постоянного тока	
AA	MBFN-RA0010-00	Одноблочная система, питание от переменного тока	
ВА	MBFN-RA0011-00	Двухблочная система, питание от переменного тока	
CA	MBFN-RA0012-00	Трехблочная система, питание от переменного тока	
ED	MBFN-RA0013-00	Блок для сборки расширения, питание от постоянного тока	
EA	MBFN-RA0014-00	Блок для сборки расширения, питание от переменного тока	

Примечание 1) AD, BD, CD, AA, BA, CA – Полностью собранные системы 2) ED, EA – Компоненты для расширения системы

2.2 Установка блоков расширения.

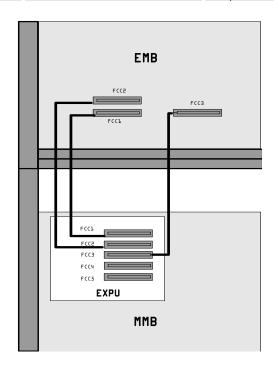
- θ Сборка ЕА.
 - Отвинтите четыре '+' винта в верхней крышке модуля АА.
 - Поместите модуль EA на блок AA и заверните четыре '+' винта в нижней части EA.
 - Поместите верхнюю крышку на блок ЕА и заверните четыре '+' винта.
 - Установите EXPU в модуль АА (ММВ) и соедините между собой модули ЕА и АА при помощи кабелей FCC1, FCC2 и FCC3.


См. также "Подключение блоков для расширения системы" и "Инсталляция системы питания".

θ Сборка ED.

- Отвинтите четыре '+' винта в верхней крышке системы DA.
- Поместите блок ED на блок DA и заверните четыре '+' винта в нижней части EA.
- Поместите верхнюю крышку на блок ED и заверните четыре '+' винта.
- Подключите кабель питания между NF/TB-ES блока ED и NF/TB-ES блока DA.
- Установите EXPU в блок DA (MMB) и соедините между собой блоки DA и ED при помощи кабелей FCC1, FCC2 и FCC3.

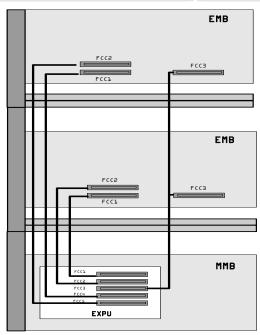
См. также "Подключение блоков для расширения системы" и "Инсталляция системы питания".



2.3 Подключение

блоков расширения (Плоский соединительный кабель - FCC)

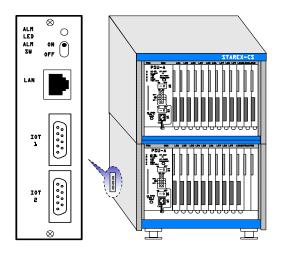
6 Система расширения BA/BD.
 Установите плату EXPU на плату MMB. (См. Установка платы EXPU)
 Подключите три FCC кабеля (5О пар каждый).


Nº FCC	Соединение	Сигналы
1	EXPU FCC1 ⇔ EMB FCC1	Магистральная сигнальная шина
2	EXPU FCC2 ⇔ EMB FCC2	Тактовая сигнальная шина
3	EXPU FCC3 ⇔ EMB FCC3	Параллельная системная тактовая шина

Категория	Серийный номер	Наименование	Примечание
Двухблочная система	MBFN-RA0011-00	Система ВА	
Кабель	SCF-S24-023000	FCC50-EXPU/FCC1-EMB1/FCC1	
Кабель	SCF-S24-024000	FCC50-EXPU/FCC2-EMB1/FCC2	
Кабель	SCF-S24-025000	FCC50-EXPU/FCC3-EMB1/FCC3	

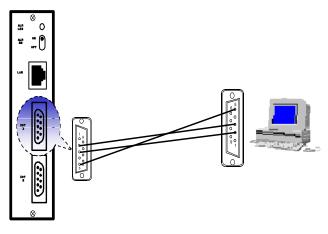
6 Система расширения - CA/CD. Установите плату EXPU на плату MMB. (См. Установка платы EXPU) Подключите пять FCC кабелей (5О пар каждый).

№ FCC	Соединение	Сигналы
1	EXPU FCC1 ⇔ EMB1 FCC1	Магистральная сигнальная шина
2	EXPU FCC2 ⇔ EMB1 FCC2	Тактовая сигнальная шина
3	EXPU FCC3 ⇔ EMB1 FCC3⇔ EMB2 FCC3	Параллельная, системные тактовые шины
4	EXPU FCC4 ⇔ EMB2 FCC1	Магистральная сигнальная шина
5	EXPU FCC5 ⇔ EMB2 FCC2	Тактовая сигнальная шина


Категория	Серийный номер	Наименование	Примечание
Трехблочная система	MBFN-RA001200	Система СА	
Кабель	SCF-S24-023000	FCC50-EXPU/FCC1←→ EMB1/FCC1	
Кабель	SCF-S24-024000	FCC50-EXPU/FCC2←→ EMB1/FCC2	
Кабель	SCF-S24-026000	FCC50-EXPU/FCC4←→ EMB2/FCC1	
Кабель	SCF-S24-027000	FCC50-EXPU/FCC5←→ EMB2/FCC2	
Кабель	SCF-S24-028000	FCC50-EXPU/FCC3←→EMB2/FCC3	

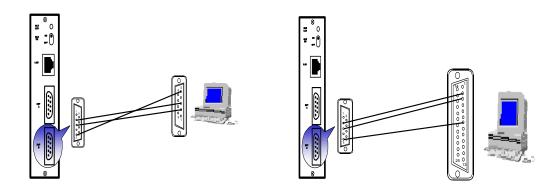
2.4 Подключение системы ввода/вывода (I/O).

Подключите последовательный порт ввода/вывода к монитору и тарификационному оборудованию (SMDA), используя разъемы ввода/вывода IOT1 и IOT2.


ІОТ1: Подключается к монитору для диагностики ошибок и т.п.

IOT2: Подключается к тарификационному оборудованию (SMDA).

[Система ввода/вывода]


ө подключение IOT1

[Рисунок 1]

Учрежденческо-производственная АТС

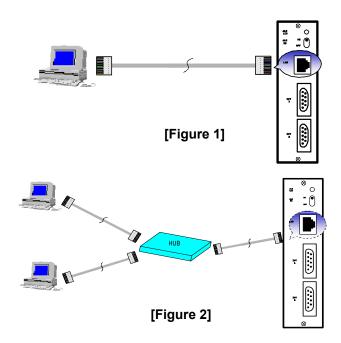
STAREX-CS

[Рисунок 2]

[Рисунок 3]

- Описание подключения ІОТ.
 - ІОТ1: Соединяет систему с РС, как показано на рисунке 1, используя контакты 2, 3 и 5 разъема RS232C (9-контактного).
 - ІОТ2: Соединяет систему (9-контактный разъем) и РС (9- или 25-контактный разъем) используя контакты 2, 3 и 5, и контакты 2, 3 и 7 разъема RS232C, как показано на рисунке 2 и рисунке 3.

Разъем RS232C	Номер контакта	Описание
RS232C 9 контактов	2	Прием данных (RX)
	3	Передача данных (TX)
	5	Земля (GND)
RS232C 25 контактов	2	Прием данных (RX)
	3	Передача данных (TX)
	7	Земля (GND)


Учрежденческо-производственная АТС

STAREX-CS

2.5 Подключение к локальной вычислительной сети (LAN).

Программа OMS управляет системой через порт LAN системы напрямую или через HUB.

θ Подключение LAN.

- ө Способ подключения LAN.
 - В зависимости от способа подключения (пользовательский или сетевой режим), система подключается к компьютеру или HUB (репитеру) с помощью кабеля с разъемами RJ-45.

 Выбор способа подключения (пользовательский или сетевой режим) осуществляется с помощью перемычек JP 1~4 на плате IOTU.

3. Установка системы электропитания.

Для системы STAREX-CS предусмотрены два типа системы электропитания: одинарный блок питания PSU-A и дублированный блок питания PSU-D.

3.1 Блок питания PSU-A.

Блок питания PSU-A состоит из конвертера переменного/постоянного тока, который преобразует переменный ток 230В/50Гц в постоянный ток 54 В. Кроме того, в состав блока питания входят: BBU (схема подключения батареи), которая обеспечивает подачу постоянного тока в моменты перебоев в электросети, а также конвертер постоянного тока, обеспечивающий подачу постоянного тока ± 5 В к системе после подключения ее к сети или батарее, и генератор индукторного вызова (ГИВ).

ө Характеристики блока питания PSU-A

Блок	Характеристики	Значение
Входные	Количество фаз	Одна
характеристики	Напряжение	Переменный ток 230 В/50 Гц
характеристики	Допустимый диапазон напряжения	197 B ~ 253 B
	Напряжение	Постоянный ток –54 В
	Выходной ток	6.0 A
Конвертер	Пульсирующий шум	Менее 100 мВ
переменного/	Пиковый шум	Менее 250 мВ на пике
постоянного	кпд	Более 70%
тока	Линейная стабилизация	Менее ± 2% от выходного напряжения по отношению к входному при полной нагрузке
	Динамическая стабилизация	Менее ± 3% от выходного напряжения при изменении от полной нагрузки к ее снятию
	Фиксированное напряжение зарядки	-52 B ~ -52.8 B
Батарея	Выравнивающее напряжение зарядки	-57 B ~ -57.6 B
	Ток	Суммируется по всем емкостям
	Выходное напряжение/ток	+5 B/20 A, -5 B/1.0 A
	Пульсирующий шум	Менее 70 мВ
Конвертер	Пиковый шум	Менее 120 мВ на пике
постоянного/ постоянного	Линейная стабилизация	Менее ± 2% от выходного напряжения по отношению к входному при полной нагрузке
тока	Динамическая стабилизация	От выходного напряжение при полной нагрузке по отношению к ее отсутствию
	+ 5V / -5V	Менее \pm 3%/Менее \pm 5%
	Выходное напряжение	85 B
	Выходная мощность	10 BT
RGU	Выходная частота	25 Γц ± 5%
(Генератор	Форма выходной волны	Синусоида
индукторного вызова)	Линейная стабилизация	Выходное напряжение по отношению к входному при нагрузке: 85 B \pm 5 B.
	Динамическая стабилизация	Выходное напряжение при изменении от нагрузки к ее отсутствию: $85 \text{ B} \pm 5 \text{ B}$.

[Таблица – блок питания PSU-A]

ө Описание надписей на передней панели PSU-A.

Тип устройства	Надпись на передней панели	Описание	
	AC. IN	Индикатор подключения к сети	
	BT. DSC	Индикатор разрядки батареи	
Индикаторные	-54V	Постоянный ток –54 В	
светодиоды	+5V	Постоянный ток +5 В	
	-5V	Постоянный ток –5 В	
	RING	ГИВ	
Терминал регулировки напряжения	+5V ADJ	Регулировка +5 B	
Предохранитель	AC Fuse	250 В / 10 А сеть переменного тока	
Продохранитель	BT Fuse	125 В / 20 А аккумуляторная батарея	
	AC SW	Выключатель переменного тока	
Переключатель	BT SW	Выключатель батареи	
	BT RST	Кнопка принудительного подключения батареи	
Терминала входа питания	AC IN	Разъем 230 В / 50 Гц	
	BT+	Терминал подключения «плюса» батареи	
Батарея	\bigoplus	Терминал подключения защитного заземления батареи	
	BT-	Терминал подключения –48 В к батарее	

θ Установка PSU-A.

• Установка PSU-A.

Вставьте PSU-A по направляющим, расположенным на левой стороне передней полки. Зафиксируйте PSU, завернув соответствующий болт.

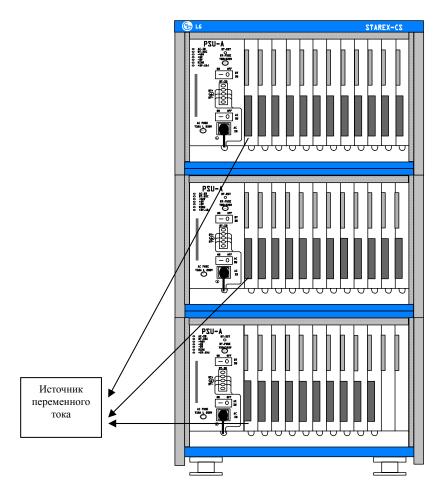
• Подключение аккумуляторной батареи и заземления.

Подключите идущие от батареи провода BAT+ (LGND, коричневый) и BAT- (черный) в разъем BT IN в передней части PSU-A. Подключите также провод защитного заземления FGND (зеленый/желтый) к корпусу стойки и закрепите его болтом.

Для подключения модулей ВА (основной + блок расширения 1) и СА (основной + блоки расширения 1 и 2), подключите LGND, FGND и "-48" параллельно с каждым PSU-A.

• Проверка подключения.

Подключите сетевой шнур к разъему AC IN PSU-A и включите переключатели AC SW и BT SW.


Проверьте наличие выходного напряжения с помощью светодиодов AC IN, BT IN, +5V, -5V, RING и т.п. на передней панели PSU-A. (Нормальное состояние светодиодов: включены.)

• Проверка выходного напряжения.

С помощью вольтметра измерьте напряжение между контактами LB6 контакт 1 (+5 B) и LB6 контакт 50 (земля) на задней стенке MMB и EMB. Если напряжение меньше +5 B, отрегулируйте его с помощью регулятора "+5V ADJ".

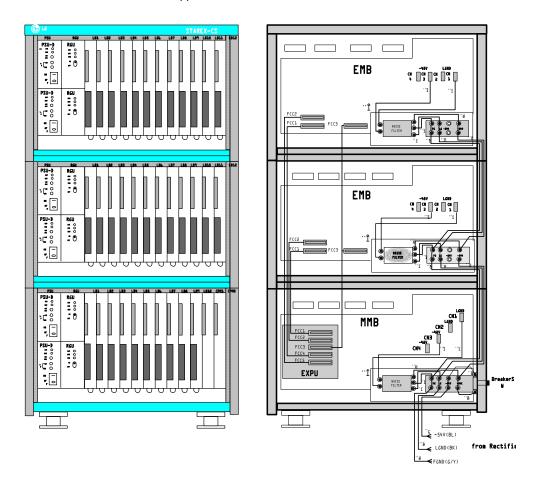
ө Подключение питания к PSU-A.

PSU-A снабжает систему электроэнергией, для чего нужно подключить разъем AC IN, расположенный на передней панели PSU-A к сети питания. Метод подключения электропитания к блокам расширения такой же, как и для основного модуля.

[Рисунок подключение питания к PSU-A]

3.2 Блок питания PSU-D.

PSU-D подает переменный ток -54 B к конвертору постоянного тока, расположенному внутри PSU-D, от внешнего источника. После этого конвертер вырабатывает постоянный ток ± 5 B, который необходим для работы системы, и также подает его на вход RGU.


Для отключения входного напряжения, воспользуйтесь выключателем, расположенным на задней части блока слева.

ө Характеристики блока питания PSU-D

Блок	Характеристики	Значение	
	Входное напряжение	Постоянный ток –54 В	
	Допустимый диапазон	Постоянный ток –48 В ~ 60 В	
	Выходное напряжение/ток	+5 B/20 A, -5 B/1 A	
	кпд	Более 70%	
	Пульсирующий шум	Менее 50 мВ	
PSU-D	Пиковый шум	Менее 1000 мВ на пике	
	Линейная стабилизация	Менее $\pm \ 2\%$ от выходного напряжение по отношению к входному при полной нагрузке	
	Динамическая стабилизация	Менее \pm 3% от выходного напряжение при изменении от полной нагрузки к отсутствию нагрузки	
	Входное напряжение	Постоянный ток –54 В	
	Допустимый диапазон	Постоянный ток –48 В ~ 60 В	
	Выходная мощность	10 Вт	
	Выходная частота	25 Γц ± 5%	
RGU (Генератор	Форма выходной волны	Синусоида	
индукторного	Выходное напряжение	85 B ± 5 B	
вызова)	Коэффициент искажения	Менее 5%	
	Линейная стабилизация	Выходное напряжение по отношению к входному при полной нагрузке: 85 B \pm 5 B.	
	Динамическая стабилизация	Выходное напряжение при изменении от полной нагрузки к отсутствию нагрузки: $85\ B\pm 5\ B$.	

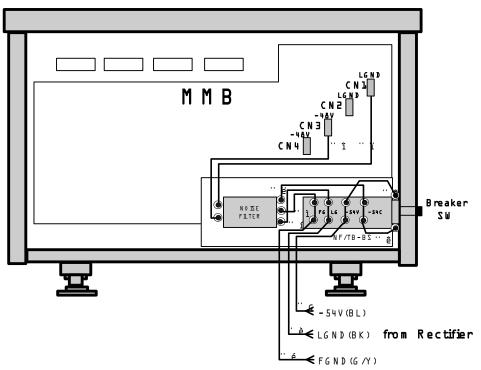
[Таблица – блок питания PSU-D]

ө Установка PSU-D и подключение источника питания.

[Установка и подключение PSU-D]

Примечание: **Noise filter** – фильтр; **Breaker SW**– выключатель; **from Rectifier** – от выпрямителя.

θ Проводка и ее спецификация.


Nº	Чертеж №.	Цвет провода	Спецификация разводки проводов
1	-	СИНИЙ	He менее AWG10
2	-	ЗЕЛЕНЫЙ/ЖЕЛТЫЙ	Не менее AWG10
3	-	ЧЕРНЫЙ	Не менее AWG10
4	M088-C10	СИНИЙ	AWG12 / UL1007
5	M088-C7	СИНИЙ	AWG12 / UL1007
6	M088-C8	ЗЕЛЕНЫЙ/ЖЕЛТЫЙ	AWG14 / UL1007
7	M088-C9	ЧЕРНЫЙ	AWG12 / UL1007
8	M088-C6	ЧЕРНЫЙ	AWG12 / UL1007
9	M088-C5	СИНИЙ	AWG12 / UL1007
10	M088-C13	ЗЕЛЕНЫЙ/ЖЕЛТЫЙ	AWG12 / UL1007
11	M088-C11	ЧЕРНЫЙ	AWG12 / UL1007
12	M088-C12	СИНИЙ	AWG12 / UL1007
Α	SR088A	NF/TB-BS	Фильтр и оконечный блок BS
В	SR088B	NF/TB-ES	Фильтр и оконечный блок ES

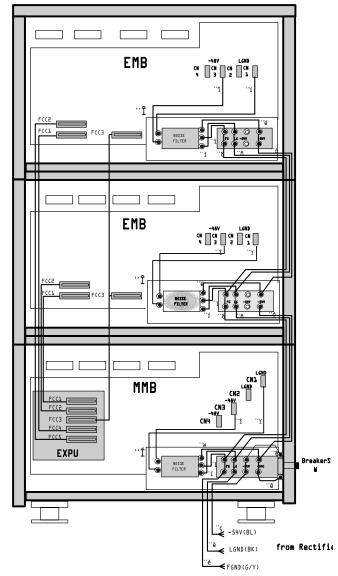
- ө Установка блока питания для базового модуля (тип AD).
 - От внешнего выпрямителя подключите провода "–54 В" (1), линейного заземления LGND (2) и заземления FGND (3) к разъему NF/TB-BS, расположенному на задней стенке.
 - Провода, расположенные между NF/TB-BS MMB и NF/TB-BS EMB (4, 5, 6, 7, 8 и 9) не нуждаются в подключении, так как они поступают от изготовителя уже подключенными.
 - Вставьте модули PSU-D и RGU по направляющим и закрепите их сверху и снизу прилагающимися невыпадающими винтами.
 - Включите выключатель (выключатель постоянного тока), расположенный слева на задней стенке модуля, а затем включите выключатели модулей PSU-D и RGU.
 - Проверьте состояние светодиодов ALM и NOR, которые показывают наличие выходного напряжения с RGU-D. После этого, измерьте с помощью вольтметра напряжение +5 В в Т.Р. (в тестовой точке). Если напряжение меньше +5 В, отрегулируйте его с помощью регулятора "+5V ADJ".

Примечание: Подключайте систему к источнику питания при наличии одновременно двух PSU-D (дублирование).

- Проверьте состояние светодиодов ALM, OPR и STB, которые показывают статус работы RGU.
 - При установке двух RGU для дублирования, на верхнем RGU будет гореть светодиод OPR, указывающий, что данный RGU обслуживает систему, а на нижнем RGU будет гореть светодиод STB, указывающий, что RGU находится в

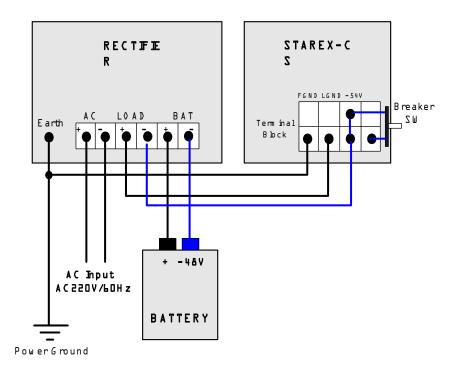
резерве.

[Подключение PSU-D к сети - вид сзади]


- ө Установка блока питания для блоков расширения (тип BD/CD).
 - От внешнего выпрямителя подключите провода "–54В" (1), линейного заземления LGND (2) и заземления FGND (3) к разъему NF/ТВ-ВЅ, расположенному на задней стенке системы.
 - Провода (4), (5), (6), (7), (8), (9), (+) и (-), расположенные между NF/TB-BS не нуждаются в подключении, так как они поступают от изготовителя уже подключенными.
 - Установите два PSU-D и два RGU по направляющим, расположенным слева на передней стороне всей системы, установите блоки расширения 1 и 2 и прикрепите их невыпадающими винтами.
 - Включите выключатель (выключатель постоянного тока), расположенный слева на задней стенке модуля, а затем включите модули PSU-D и RGU.
 - Проверьте состояние светодиодов ALM и NOR, которые показывают наличие выходного напряжения с PSU-D. После этого, измерьте с помощью вольтметра напряжение +5 В в Т.Р. (в тестовой точке). Если напряжение меньше +5 В, отрегулируйте его с помощью регулятора "+5V ADJ".

Примечание: Подключайте систему к источнику питания при наличии одновременно двух PSU-D (дублирование). Система выходного питания основного

модуля и каждого модуля расширения работают независимо.


• Проверьте состояние светодиодов ALM, OPR и STB, которые показывают наличие выходного напряжения RGU.

При установке двух RGU для дублирования, на верхнем RGU будет гореть светодиод OPR, указывающий, что данный RGU обслуживает систему, а на нижнем RGU будет гореть светодиод STB, указывающий, что RGU находится в режиме ожидания.

[Подключение питания к модулям BD/CD - вид сзади]

θ Диаграмма подключения выпрямителя.

Примечание: Rectifier — выпрямитель; Earth — земля; Terminal Block — оконечный модуль; Breaker SW — выключатель; AC — переменный ток; Load — нагрузка; Battery — аккумуляторная батарея; Power Ground — заземление.

3.3 Потребляемая мощность.

в Потребляемая мощность плат и аппаратов.

Плата	Напряж ение В	Ток (А)	Количество (шт)	кпд	Потребляемая мощность (Вт)
ASLC	+5	0.9	_ 1	0.7	6.4
APTC	+5	1	1	0.7	7.1
DSLC-LGP	+5	0.29	1	0.7	2.1
SLT	-54	0.04	1	1	2.16
D-TEL	-54	0.04	1	1	2.16

ө Потребляемая мощность типа А.

Плата	Вычисление	кпд	Потребляемая мощность (Вт)
CPM x 2EA	5 B x 2 A x 2 ДА = 20 Вт	0.7	6.4
SLT x 288 Расшир.	54 B x 0.04 A x 288x0.4 = 250W	0.7	7.1
ASLC x 9EA	(0.9 мA x 5 B x 9)/КПД = 40.5/0.7 = 58W	0.7	2.1
Мощность абонентской линии	0.04 1	1	2.16
D-TEL	0.04 1	1	2.16

- Потребляемая базовой системой мощность (тип A) конфигурация с максимальным количеством SLT.
 - Плата управления (два CPM): 5B x 2A x 2шт. = 20 Вт.
 - 288 линий SLT: 54B x 0.04A x 288 x 0.4 = 250 Вт (При загрузке 40%).
 - Мощность, потребляемая платой ASLC (девять плат): (0.9мА x 5В x 9)/КПД =40.5W/0.7 = 58 Вт.
 - Потребляемая мощность: 328/0.7 Вт = 457 ВТ (КПД 70%).
- Потребляемая базовой системой мощность (тип A) конфигурация с максимальным количество цифровых телефонов.
 - Плата управления (два СРМ): 5В х 2А х 2шт. = 20 Вт.
 - 144 линии цифровых телефонов: 54B x 0.04A x 144 = 311 Вт.
 - Мощность, потребляемая платой DSLC-LGP (девять плат):
 (0.9мА x 5B x 9)/КПД =40.5W/0.7 = 58 Вт.
 - Потребляемая мощность: 389/0.7 Вт = 555 Вт (КПД 70%).

Учрежденческо-производственная АТС

STAREX-CS

- Мощность, потребляемая системой расширения конфигурация с максимальным количеством SLT.
 - 288 линий SLT: 54B x 0.04A x 288 x 0.4 = 250 Вт (При загрузке 40%).
 - Мощность, потребляемая платой ASLC (одиннадцать плат): (0.9мА x 5B x 11)/КПД =49.5Вт/0.7 = 71 Вт.
 - Потребляемая мощность: 375/0.7 Вт = 536 Вт (КПД 70%).
- Мощность, потребляемая системой расширения конфигурация с максимальным колическтвом цифровых телефонов.
 - 176 линий цифровых телефонов: 54BV x 0.04A x 176 = 380 Bт.
 - Мощность, потребляемая платой ASLC (одиннадцать плат): (0.9мА x 5В x 11)/КПД =49.5Вт/0.7 = 71 Вт.
 - Потребляемая мощность: 451/0.7 Вт = 644 Вт (КПД 70%).
- ө Емкость внешнего выпрямителя.
 - Потребляемый ток может изменяться в зависимости от конфигурации системы.

Модульная конфигурация	SLT конфигурация (Вт)	D-TEL конфигурация (Вт)	Выпрямитель (Максимальная конфигурация)	Батарея (максимальная конфигурация)
Система А	457	555	20A	100AY
Система Б	993	1,199	30A	200AY
Система В	1.529	1,843	30A	300AY

Примечание: Система А (Основной блок)

Система Б (Основной блок + один блок расширения)

Система В (Основной блок + два блока расширения)

Напряжение на выходе выпрямителя: - 54В

Напряжение батареи: - 48В

3.4 Емкость аккумуляторной батареи.

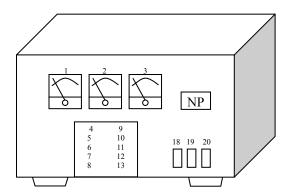
- Ток батареи: 10А.
- Время отсутствия питания (время работы батареи): 8 часов.
- КПД батареи: 60%.
- Формула для расчета емкости батареи:

(Ток, потребляемый батареей * время отсутствия питания/КПД батареи) = ($10 \, \text{A} \times 8 \, \text{ч}$)/0.6 = $133 \, \text{A} \text{ч}$

3.5 Установка выпрямителя.

Выпрямитель – это устройство, преобразующее переменный ток в стабилизированный постоянный ток. Выпрямитель подключается в случае использования PSU-D.

Большинство выпрямителей имеют воздушное охлаждение. Поэтому, для установки выпрямителя должно выбираться хорошо вентилируемое место и вокруг него должны быть предусмотрены зазоры минимум по 20 см. Более того, выпрямитель должен устанавливаться в помещении с температурой выше нуля градусов, с низкой влажностью и степенью содержания пыли в воздухе.


Для избежания проблем, связанных с перебоем в электропитании, к выпрямителю должна подключаться батарея.

- Характеристики выпрямителя.
 - Входные.
 - ➤ Напряжение: 230B ± 15%.
 - ▶ Частота тока: 50Гц ± 3Гц.
 - Выходные.
 - ➤ Нагрузка: -54B ± 1B.
 - ▶ Батарея: Стационарное напряжение зарядки 52±1В, выровненное напряжение зарядки 55±1В.
 - > Индикация стабилизации напряжения: Менее 1%.
 - Пульсации: Менее 100мВ.
 - ➤ Шум: Менее 2мВ.
 - ≻ КПД: Более 70%.
 - Схемы защиты.
 - ➤ Защита от повышенного напряжения на выходе: 60B ±1B.
 - > Защита от повышенного выходного тока: 120% от номинального: Сигнал.
 - > Защита от повышенного разряда батареи (порог): 44В.
 - > Предупреждение о сбое в питании: Сигнал.
 - Изоляция.
 - Сопротивление изоляции: Более 100 MoM.
 - ➤ Напряжение пробоя: Более 1 КВ.

Учрежденческо-производственная АТС

STAREX-CS

в Внешний вид выпрямителя и органы управления на передней панели (20А / 30А).

Nº	Наименование	Nº	Наименование
1	Входной вольтметр	11	Переключатель амперметра
2	Выходной вольтметр	12	Выключатель звуковой сигнализации
3	Выходной амперметр	13	Переключатель сигнализации по сбою входного питания
4	Индикатор входного напряжения	14	Переключатель TRIP (включение режима отсечки)
5	Индикатор выровненной зарядки	15	Регулятор зарядного напряжения
6	Сигнальный индикатор повышенного/пониженного напряжения	16	Регулятор нагрузочного напряжения
7	Сигнальный индикатор перегрузки (по току)	18	Входной автоматический выключатель
8	Сигнальный индикатор сбоя входного питания	19	Автоматический выключатель батареи
9	Переключатель режима зарядки	20	Автоматический выключатель нагрузки
10	Переключатель вольтметра		

• Шнур питания.

▶ Шнур питания должен быть как можно короче для избежания падения напряжения и должен иметь соответствующее сечение провода.

• Регулировка

Напряжение питания было зафиксировано производителем на 230 В во время проведения регулировок. Однако, пользователь должен проверить следующее:

- > Подача входного напряжения.
- > Регулировка стационарного напряжения зарядки (53В).

- > Регулировка выровненного напряжения зарядки (56В).
- > Регулировка нагрузочного напряжения.
- > Цепь сигнализации.
- > Пониженное напряжение питания.
- > Повышенный ток питания.
- > Защита от перегрузки.
- Установка аккумуляторной батареи.
 - ▶ Выключите батарею (19) NFB и (20) NFB.
 - ▶ Проверьте полярность батареи и подключите разъем батареи, расположенный снизу на задней стенке.
 - ▶ Включите постоянный ток (18) на батарею NFB и проверьте напряжение зарядки.

3.6 Заземление.

Для того чтобы система работала стабильно, должно быть устроено соответствующее заземление, как самой системы, так и токоведущих линий. Это делается для защиты при попадании молнии, для снижения шума, для предотвращения перегрузки по току или напряжению и воздействия статического электричества, а также для предотвращения поражения людей электрическим током.

Строго запрещено проводить вблизи оборудования проводку от другой аппаратуры. Для изоляции от внешних помех, вызываемых другими заземляющими устройствами, система STAREX-CS, выпрямитель и кросс должны быть изолированы от здания.

- θ Цели заземления.
 - Защита людей и оборудования при попадания молнии, перегрузки по току и напряжению.
 - Обеспечение разрядного канала для излишней электроэнергии, возникающей в результате попадания молнии или всплеска напряжения в сети.
 - Защита системы от статического электричества.
 - Удаление или сглаживание наводок от корпуса системы и внешнего оборудования.
 - Стабилизация стандартного электрического потенциала цепи по отношению к земле.
- Классификация способов заземления.
 - Заземление оборудования для связи.
 - Заземление громоотвода для предотвращения попадания молнии.
 - Заземление водопроводов.
- Опротивление заземления, необходимого для оборудования данного типа. Сопротивление заземления, необходимого для каждого устройства, следующее:

Тип	Сопротивления заземления
Рабочее заземление (учитывая емкость)	- Менее 500 линий: менее 10Ω - $501 \sim 5,000$ линий: менее 5Ω
Защитное заземление	- Для защиты главной распределительной панели: менее 10 $\!\Omega$ - Терминал: менее 300 $\!\Omega$

- Система безопасности: менее 100Ω

в Изоляционные материалы.

В зависимости от характеристик изолируемой аппаратуры, должны использоваться изолирующие втулки, панели или изоляторы.

• Изолирующие втулки.

Втулки изолируют сочлененные детали с помощью болта и гайки. Материалом для втулки должна служить поликарбонатная смола или иной материал с аналогичными или превосходящими характеристиками. Выпускаемые втулки имеют различные размеры, поэтому используемая втулка должна подбираться с учетом размеров болта.

Изоляторы.

Изоляторы используются для изоляции пола от корпуса оборудования. Для этих целей используются фенол-волоконные листы или иные материалы с аналогичными или превосходящими характеристиками. Изоляторы должны применяться с учетом веса и контактной площади оборудования.

Изоляционные листы.

Изоляционные листы используются в случае установки терминального оборудования на стене или внутри стены. В качестве материала могут использоваться стекловолоконные листы.

• Изолирующие трубки.

ВЕРСИЯ 1.00

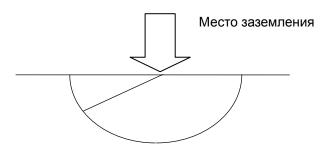
Изолирующие трубки используются в случаях, когда заземляющий провод проходит через стену, пол или потолок. В качестве изолирующего материала должен применяться винил, ПВХ, или аналогичные по характеристикам материалы.

Изолятор (металлическая опора).

Изолятор данного типа используется для изоляции заземляющих панелей от стен или прочих конструкций. Это изолятор поддерживающего типа, состоящий из изоляционного материала и металлического каркаса, который должен иметь соответствующие размеры для крепления основной и дополнительной изолирующих панелей.

- в Разработка основы изоляции.
 - Факторы, влияющие на разработку.
 - > Минимизация сопротивления заземления.
 - > Характеристики почвы (измерение и анализ проводимости почвы).
 - > Соединение заземления и почвы.
 - > Долгосрочная стабильность заземляющего устройства.
 - > Выбор материала для заземления.
 - > Заземление должно быть постоянным.
 - > Емкость должна быть достаточной для сопротивления току.
 - > Характеристики низкого сопротивления.
 - Перед началом монтажа заземляющего оборудования, необходимо произвести требуемые замеры. Знание проводимости почвы поможет загодя определить масштаб строительных работ, а также выбрать место расположения заземления, удобное для обеспечения требуемого сопротивления.
 - > Факторы, воздействующие на проводимость почвы.
 - > Качество почвы (форма).
 - ➤ Влажность почвы.
 - Количество ионизированных материалов.
 - > Сезонные колебания температуры почвы.
 - Измерение и анализ проводимости почвы.
 - Определение расстояния.

При возникновении молнии и ее попадании в подземные электрокабели, пиковое значение тока земли вблизи линий связи должно быть меньше индуцированного напряжения. Расстояние между изолированными линиями связи и изолированными электроведущими кабелями, выраженное в следующей формуле, должно быть меньше предельного.


Учрежденческо-производственная АТС

STAREX-CS

$$D = \frac{\rho I}{2\pi V}$$

В приведенной выше формуле,

- D : Расстояние в метрах между изолированными токоведущими линиями и линиями связи.
- □: Действительное сопротивление почвы (0 · м)
- I: Ток утечки в землю от молнии (A): Ток утечки в землю в результате попадания молнии. В случае токопередающих устройств этот параметр должен составлять одну десятую от тока утечки. В случае подземных токопередающих и распределительных линий, величина этого параметра должна учитывать распределительный эффект от места расположения заземления.
- V: Предельное значение индуцированного напряжения (650B).

В случае токоведущей линии

В случае распределительной линии

$$\begin{split} \rho &= 200 \; (\Omega \cdot \text{m}) & \rho &= 100 \; (\Omega \cdot \text{m}) \\ I &= 3,000 \; (A) & I &= 2,000 \; (A) \\ D &= 20 \; (\text{m}) & D &= 20 \; (\text{m}) \end{split}$$

$$V = \frac{3,000 \times 200 \times 0.1(*)}{2 \times 3.14 \times 20} = 4777 \quad V = \frac{100 \times 2,000 \times 0.5 (*)}{2. \times 3.14 \times 20} = 796(B)$$

- * 0.1 коэффициент распределительного эффекта
- 0.5 коэффициент распределительного эффекта для распределительной линии.

Рисунок – Определение изолирующего расстояния для изолирующего материала.

- Изолирующее расстояние для изолирующего материала.
 - > Около двухсот метров от электростанции и подстанции.
 - Более 60 метров от линии электропередачи или металлической башни.
 - ➤ Более 10 метров от линии высокого напряжения (22.9 KB).
- Закапывание заземляющего штыря в землю.

Для заглубления заземляющего штыря используется кувалда, или оборудование, использующее электрическую или пневматическую силу при заглублении сразу нескольких штырей.

Независимо от типа штыря, его головка не должна принять грибообразную форму. А если штырь покрыт пленкой, то ее не следует удалять или разрушать.

- Штырь следует заглубить в землю на расстояние, составляющее две его длины.
- ➤ Заземляющий штырь должен быть заглублен на такое расстояние, чтобы расстояние от заземляющего провода (стандартный медный провод) до поверхности земли было больше 75 см.
- Заземляющее устройство коммуникационного оборудования и заглубленный в землю проводник разрядника должны находиться на расстоянии не менее 5 метров друг от друга.
- ➤ Заземляющее устройство коммуникационного оборудования и заглубленный в землю проводник заземления водопровода должны находиться на расстоянии не менее 10 метров друг от друга.

• Заглубление заземляющего штыря в землю

Для заглубления заземляющего штыря в землю, должна быть выкопана яма 30 см в диметре и 75 см в глубину, как показано на рисунке. Затем заземляющий штырь должен быть забит в землю так, чтобы его головка выступала над землей на 15 см. После этого к штырю следует прикрепить заземляющий провод.

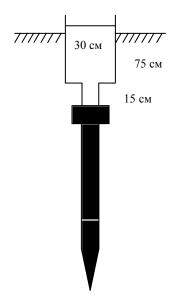
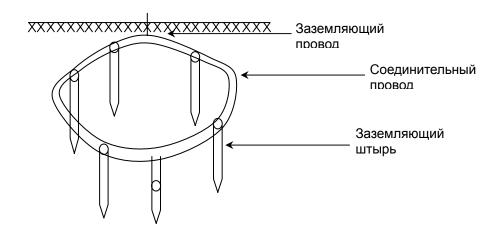
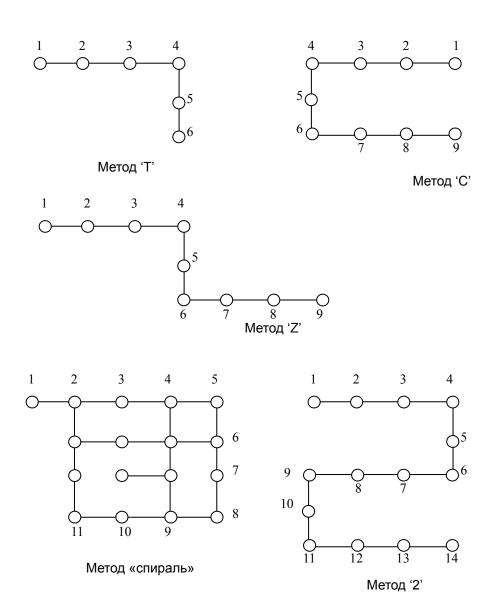


Рисунок – Заглубление заземляющего штыря в землю

Метод заземления кольцом.

При использовании этого метода, заземляющие штыри располагаются на одном расстоянии от центра окружности, как показано на рисунке. Для заглубления заземляющего штыря в землю, должна быть выкопана яма 30 см в диметре и 75 см в глубину. Затем заземляющий штырь должен быть забит в землю так, чтобы его головка выступала над землей на 15 см. После этого штыри должны быть соединены параллельно и соединены с основным заземляющим проводом с помощью медного рукава.




Рисунок – Метод заземления кольцом.

Метод параллельного заземления.

Методы параллельного заземления показаны на следующем рисунке. Могут использоваться различные методы, включая спираль, Т-метод, С-метод, Z-метод и 2-метод. Как и в методе заземления кольцом, заземляющий провод должен быть подключен к соединительному.

Учрежденческо-производственная АТС

STAREX-CS

Примеры параллельных методов заземления.

 Метод заземления с помощью провода.
 Заземляющий провод укладывается под землю в том случае, если применение заземляющего штыря затруднено по причине твердой почвы. Для получения лучшего заземляющего эффекта, провод должен быть расположен под землей в форме сетки.

- θ Заземление внутри коммуникационного оборудования.
 - Заземление.
 - Тип заземления.
 - > Заземление кольцевого типа.

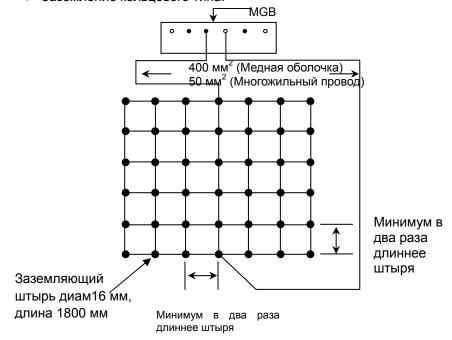


Рисунок – Диаграмма заземления кольцевого типа.

➤ Заземление типа «замкнутое кольцо».

Для усиления заземляющего эффекта коммуникационной комнаты, прокладывается заземление типа «замкнутое кольцо», которое располагается на одинаковой удаленности вокруг всего здания, как показано на рисунке. При этом более двух сторон уложенного под землю провода должны соединяться с внутренней основной пластиной заземления (МGB) как можно более коротким проводом сечением не менее 400 мм².

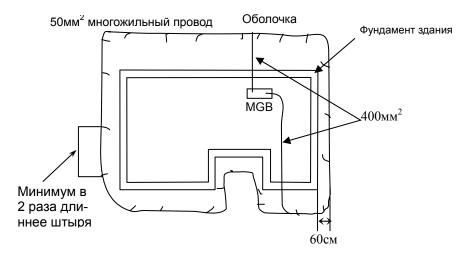


Рисунок - Диаграмма заземления типа «замкнутое кольцо».

- Установка заземляющей пластины.
 - Заземляющая пластина должна быть закреплена с использованием изолятора.
 - MGB должна быть закрыта для предотвращения угрозы поражения током и для предотвращения ее коррозии.
 - ▶ Для заземления рубильника должна быть установлена отдельная пластина заземления, если площадь помещения, где устанавливается оборудование или общая площадь помещений для этой цели превышает 400м² или если ее длина более 60м, поскольку система заземления использует точечный метод, при котором все заземляющие провода соединяются с MGB. Соединяйте пластины как показано на рисунке с помощью заземляющего провода сечением 400мм².

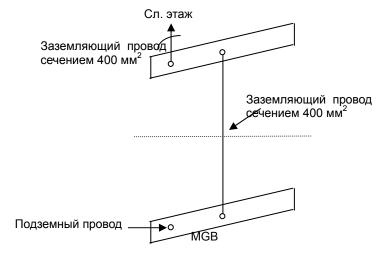


Рисунок – Диаграмма установки новой MGB.

• Если заземление используется для устройств разного типа или разветвляется на несколько устройств одного типа, то следует установить вторую или третью пластину заземления и разветвлять заземление напрямую с этих пластин, используя заземляющий провод.

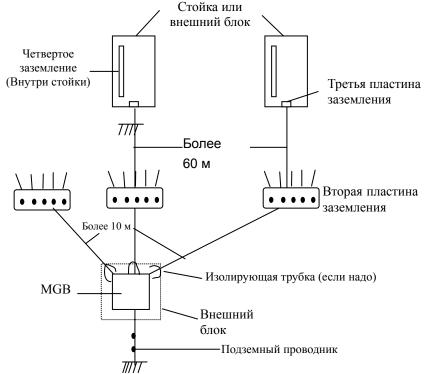


Рисунок – Разветвление второй и третьей МGВ.

• Прокладка заземляющего провода.

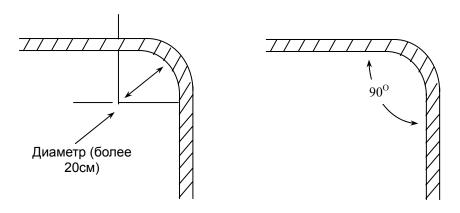
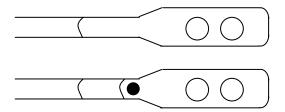
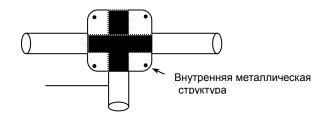


Рисунок – Изгиб заземляющего провода.

• Установка наконечников заземляющего провода.




Рисунок – Наконечник заземляющего провода.

 Заземление внешнего блока.
 Для заземления внешних блоков различных устройств, удалите изоляцию с провода и закрепите его наконечник на внешнем блоке.

θ Соединение.

Соединение главного и заземляющего провода.
 Для соединения заземляющего штыря с заземляющим проводом, а также для соединения заземляющих проводов между собой, плотно сожмите их с помощью гидравлического компрессора и соединительного приспособления типа «С», так, чтобы они образовали единое целое.

- Разветвление медного провода.
 Для разветвления медного провода, используйте тиски для уменьшения контактного сопротивления и соединяйте провода так, как показано на рисунке ниже.
- Закройте соединенные провода крышкой.

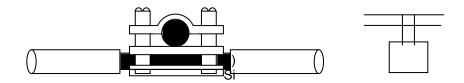


Рисунок – Разветвление медного провода (вид снизу и сбоку).

Соединение накладывающихся проводов заземления.
 Для соединения накладывающихся проводов заземления, производимого для удобства измерения, используется медная трубка типа 'В' (KSC2619). Болт, гайка и шайба должны быть изготовлены из того же материала, что и трубка (медь + покрытие оловом), или из фосфорной бронзы. После соединения медная трубка и провод заземления (22мм² 600в провод с виниловой изоляцией) должны быть обжаты с помощью компрессора. После этого все контактные части должны быть заизолированы.

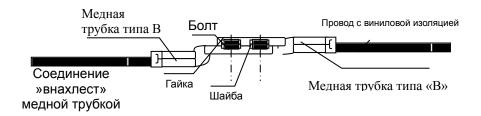
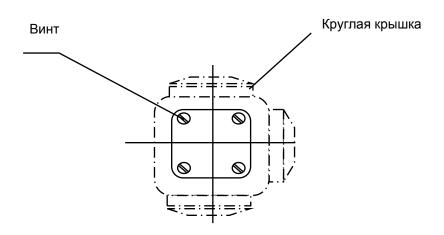
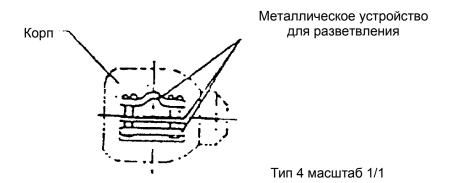




Рисунок – Соединение проводов заземления с помощью медной трубки

Учрежденческо-производственная АТС

STAREX-CS

Тип	Спец.	Α	В	С	D	Е	F	G	Н	1	J	K	L
1	125~200	65	64.5	49	48	28	23Ø	36Ø	15Ø	29Ø	32.5	25.5	41
2	60~100	58.7	57	43	43	26	17Ø	33Ø	13Ø	26Ø	29.3	22.3	36
3	30~50	48	47	36	35	21	13Ø	26Ø	11Ø	21Ø	24	17.5	29.5
4	8~22	35	34	25	26	17	10Ø	22Ø	7Ø	15Ø	17.5	13	21

Рисунок – Устройство для разветвления проводов заземления.

ө Устройство изоляции.

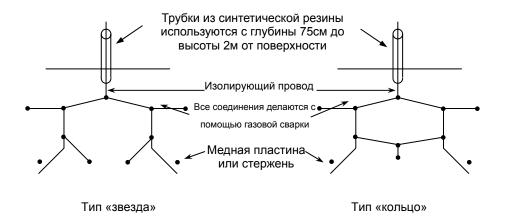
Для усиления заземляющего эффекта оборудования систем передачи и для уменьшения электрических наводок, возникающих из-за одновременной прокладки высоковольтных и низковольтных кабелей, перечисленные ниже элементы должны быть изолированы друг от друга.

- Внешние блоки оборудования и кабельные пути.
- Кросс и основание системы освещения.
- Корпус кросс и пластина заземления кросса.
- Здание и внешний блок оборудования.
- Внешний блок оборудования и случайное различное оборудование в здании.
- Здание и кабельроста.
- Внешний блок оборудования и кабельроста.

В случае если кабель проложен по поддерживающим рельсам, изоляция достигается путем вставки болтов, соединяющих поддерживающие рельсы в изолирующие цилиндры. Точно так же следует поступить, если основной болт, поддерживающий направляющие рельсы, вбит в потолок и кабель проложен по этим рельсам. В случае необходимости, в тех местах, где кабель касается поддерживающих рельс, можно подложить изоляционные панели.

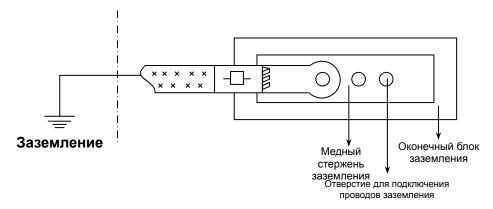
- Внешний блок оборудования и верхняя поверхность.
- Проложите изоляционную панель между полом здания и контактами рубильников внешнего блока. Главный болт, крепящий всю конструкцию нужно вставить в изолирующий цилиндр.
- Кросс и здание.
- Проложите изоляционную панель между полом здания и местом, где происходит контакт с металлической структурой кросса. Главный болт, крепящий всю конструкцию нужно вставить в изолирующий цилиндр.
- Металлическая структура кросса и основание освещения.
- Проложите изоляционную панель между металлическим основанием освещения и местом, где происходит контакт с металлической структурой кросса. Главный болт, крепящий всю конструкцию нужно вставить в изолирующий цилиндр.
- Стативы коммуникационного оборудования и здание.
- Проложите изоляционную панель между полом здания и местом, где происходит контакт с металлической структурой стативов коммуникационного оборудования. Главный болт, крепящий всю конструкцию нужно вставить в изолирующий цилиндр.
- Кросс оборудования передачи и здание.
- Проложите изоляционную панель между полом здания и местом, где происходит контакт с корпусом кросса оборудования передачи. Главный болт, крепящий всю конструкцию нужно вставить в изолирующий цилиндр.
- Пластина заземления и здание или элементы его конструкции.
- Следует использовать изоляцию.

Учрежденческо-производственная АТС

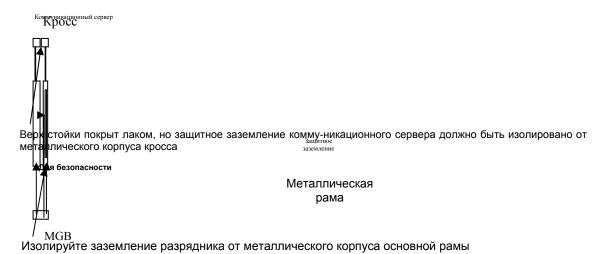

STAREX-CS

в Заглубление контура заземления.

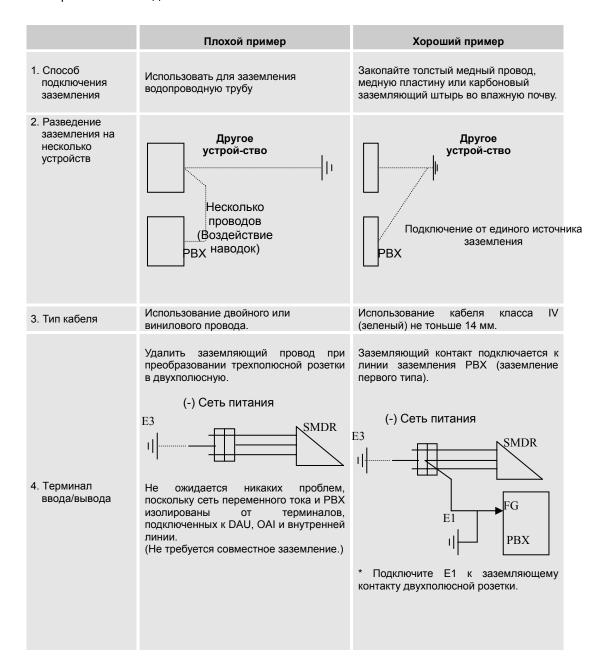
Контур заземления должен быть заглублен в землю для его заземления.


Для заглубления контура заземления, медная пластина или стержень должны быть заглублены не менее, чем на 75 см от уровня земли, как показано на рисунке.

Количество необходимых медных пластин зависит от условий заземления и требуемого уровня сопротивления заземления.



• Установка панели распределения заземления.


После того, как контур заземления окончательно заглублен, его следует подключить к каждому медному стержню, чтобы его можно было использовать со всем оборудованием.

Обеспечение заземления кросса (для безопасности).

θ Сравнение методов заземления.

- Измерение сопротивления заземления.
 - Если заземление первого типа подключено неверно, то это может вызвать такие нежелательные эффекты как шум в линии, ошибки в работе оборудования, разрыв связи во время разговора. Кроме этого может произойти пробой изоляции из-за разности напряжения в различных устройствах. Измерьте сопротивление заземления (или потребуйте проделать это от клиента) описанным ниже способом и убедитесь, что оно не превышает требуемое значение.
 - Используемое оборудование
 Омметр для измерения сопротивления заземления: 1.
 Дополнительный заземляющий стержень: Диаметр = 10 мм, Длина = 450 мм.
 Провода: 3 штуки (4 м, 10 м, 20 м).
 - Проведение измерения
 Введите дополнительный заземляющий стержень на расстоянии 10 м от основной линии заземления.

Вращение ручки генератора

Подключите заземляющий штырь, Е и дополнительный заземляющий стержень к разъемам Р и С терминала.

Увеличьте или уменьшите скользящее сопротивление, вращая ручку гальванометра, чтобы на его индикаторе появился '0'.

(Переключите множитель следующей последовательности $x100 \rightarrow x10 \rightarrow x1$). При увеличении чувствительности измерения немного выньте дополнительный стержень. нарушении чувствительности рекомендуется ввести позитивную проводящую жидкость, например, сульфат меди. (Будьте осторожны обращении ядовитыми веществами.)

Сопротивление заземления = Скользящее сопротивление x Множитель, когда гальванометр показывает '0'.

4. Установка плат.

4.1 Плата СРМ2.

в Общие сведения.

Плата СРМ2, основная управляющая плата системы STAREX-CS, может обслуживать до 992 абонентов. Она оснащена программой управления системой для обслуживания различных типов плат, установленных в системе, число которых может доходить до 34. Так как эта плата является основной платой, отвечающей за функционирование системы, она сконфигурирована базой данных (DB) для того, чтобы все 992 абонента могли пользоваться дополнительными видами сервиса.

Системная шина с интерфейсом линейной платы (LB) обменивается сообщениями с LB с помощью параллельной шины (PB), вырабатывающие различные тактовые частоты, необходимые для работы и синхронизации системы. Плата CPM2 имеет двухтональный многочастотный (DTMF) приемник с максимум 32 портами, блок системных тональных сигналов, блок коммутации 1024х1024 и блок выработки системной частоты, необходимый для обеспечения различных сервисных функций и для диагностики различных блоков, установленных в системе.

Плата СРМ2 оснащена интерфейсом подключения LAN для работы с внешней сетью и диск (8 мегабайт) для хранения программ и данных. Для запуска программ имеется динамическое ОЗУ (DRAM) объемом 16 мегабайт, куда загружаются программы с диска для инициализации системы. Таким образом, истинное управление работой системы осуществляется с помощью DRAM. Если в процессе работы программ вырабатываются данные, подлежащие сохранению, то они записываются на диск.

В системе могут быть установлены 2 платы СРМ2. При этом одна из них используется для горячего резервирования.

θ Основные характеристики.

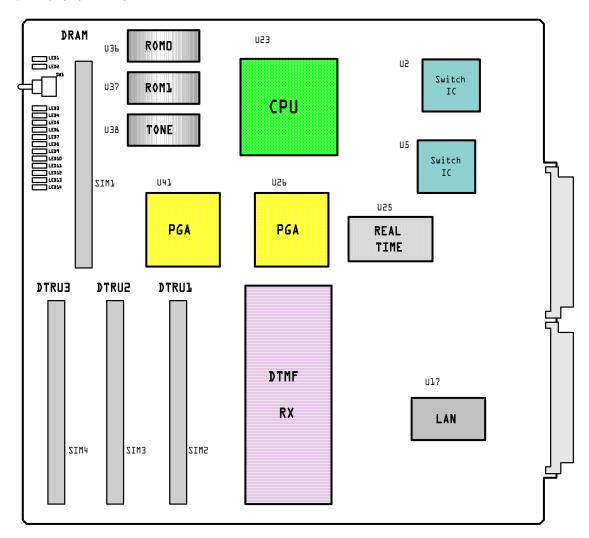
CPU : MC68EN360 / 25 МГц.

Основная память : 8 Мбайт (Диск).

DRAM : 16 Мбайт (расширяемое до 32 Мбайт). Структура коммутатора : 1024 х 1024 неблокируемая матрица. Приемник DTMF : 8 портов, расширяемый до 32 портов.

Блок выработки тонального сигнала: 16-канальный. Блок выработки DTMF сигнала : 16-канальный. LAN : 1 порт (10baseT).

Система ввода/вывода (SIO) : 3 порта (RS-232C) Отладка / Система

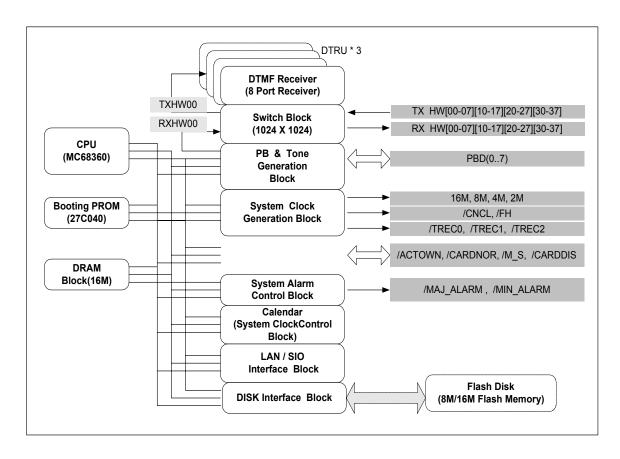

Голосовой почты / Тарификация.

Встроенный генератор тактовых частот.

Резервирование.

Функциональный самоконтроль.

ө Топология платы.


θ Функции светодиодов.

Обозначение		Описание	Рабочее состояние		
1	ACT	Плата работает	Активное	ВКЛ	
2	PB	Состояние шины	Передача/прием данных	ВКЛ/ОТКЛ	
3	SW1	Операционная система	Нормальная работа	ВКЛ/ОТКЛ	
4	SW2	Определяется программно	Активное	ОТКЛ	
_	OVVZ	определиется программию	Ожидание	ВКЛ/ОТКЛ	
5	SW3	Определяется программно	Активное	ОТКЛ	
Ü	0110	определиется программите	Ожидание	ВКЛ/ОТКЛ	
6	SW4	Определяется программно	Активное	ОТКЛ	
Ü	0114	определиется программите	Ожидание	ВКЛ/ОТКЛ	
7	SW5	Определяется программно	Активное	ОТКЛ	
•	0110	опроделяются программите	Ожидание	ВКЛ/ОТКЛ	
8	LANRX	Индикатор получения данных LAN	Прием данных	ВКЛ/ОТКЛ	
9	LANTX	Индикатор передачи данных LAN	Передача данных	ВКЛ/ОТКЛ	
10	DISK	Индикатор доступа к внешнему диску	Доступ	ВКЛ/ОТКЛ	
11	DTMF	Индикатор получения данных DTMF	Прием данных	ВКЛ/ОТКЛ	
12	SIO1	Индикатор передачи/приема SIO 1	Передача/прием данных	ВКЛ/ОТКЛ	
13	SIO2	Индикатор передачи/приема SIO 2	Передача/прием данных	ВКЛ/ОТКЛ	
14	SIO3	Индикатор передачи/приема SIO 3	Передача/прием данных	ВКЛ/ОТКЛ	

θ Описание переключателей.

SW1: Перезапуск системы.

блок-схема СРМ2.

Примечание: CPU — центральный процессор; Booting PROM — загрузочное ППЗУ; DRAM — динамическое ОЗУ; DTMF Receiver (8 port) — 8-портовый приемник DTMF; Switch Block — блок коммутации; PB & Tone generation block — блок параллельной шины и тональных сигналов; System clock generation block — блок выработки системных частот; System Alarm Control block — блок наблюдения за сбоями в системе; Calendar (system clock control block) — календарь (блок управления системными часами); LAN/SIO Interface block — блок интерфейса LAN/SIO; DISK Interface block — блок интерфейса диска; TX, RX и т.п. — системные сигналы; Flash Disk (8M/16M Flash Memory) — флэш-диск (флэш-память на 8 или 16 Мбайт).

4.2 Плата СРМ.

ө Общие сведения.

Плата СРМ, основная плата управления системой STAREX-CS, оснащена операционной системой, позволяющей системе обслуживать в конфигурации базы данных (DB) до 480 внутренних абонентов и предоставлять им различные сервисные услуги.

Системная шина с интерфейсом линейной платы (LB) обменивается сообщениями с LB с помощью параллельной шины (PB), вырабатывающие различные тактовые частоты, необходимые для работы и синхронизации системы. Плата СРМ имеет двухтональный многочастотный (DTMF) приемник с максимум 32 портами, блок выработки системных тональных сигналов, блок коммутации 512х512 и блок выработки системных частот, необходимый для обеспечения различных сервисных функций и для диагностики различных блоков, установленных в системе.

Плата СРМ оснащена интерфейсом подключения LAN для работы с внешней сетью и диск (8 мегабайт) для хранения программ и данных. Для запуска программ имеется динамическое ОЗУ (DRAM), объемом 16 мегабайт, куда загружаются программы с диска для инициализации системы. Таким образом, истинное управление работой системы осуществляется с помощью DRAM. Если в процессе работы программ вырабатываются данные, подлежащие сохранению, то они записываются на диск.

В системе могут быть установлены 2 платы СРМ2. При этом одна из них используется для горячего резервирования.

0 Основные характеристики:

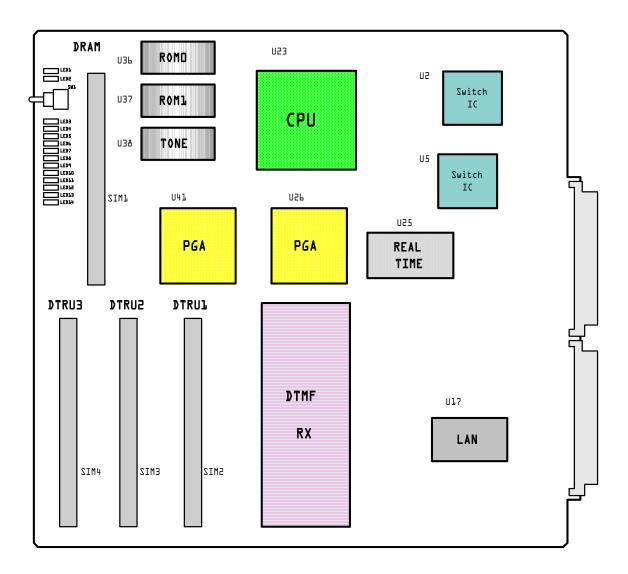
CPU : MC68EN360 / 25 МГц.

Основная память : 8 Мбайт (Диск).

DRAM : 16 Мбайт (расширяемое до 32 Мбайт). Структура коммутатора : 512 X 512 неблокирующая матрица. Приемник DTMF : 8 портов, расширяемый до 32 портов.

Блок выработки тонов/DTMF : 16 /16 каналов, соответственно.

LAN : 1 порт (10baseT).

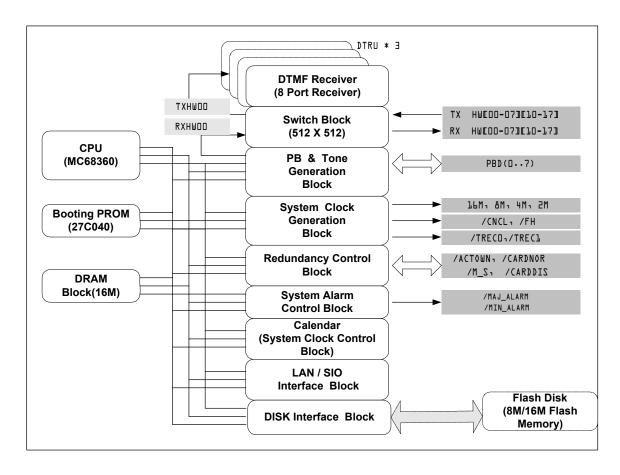

Система ввода/вывода (SIO) : 3 порта (RS-232C) Отладка/VMS/Тарификация.

Таймер реального времени.

Резервирование.

Функциональный самоконтроль.

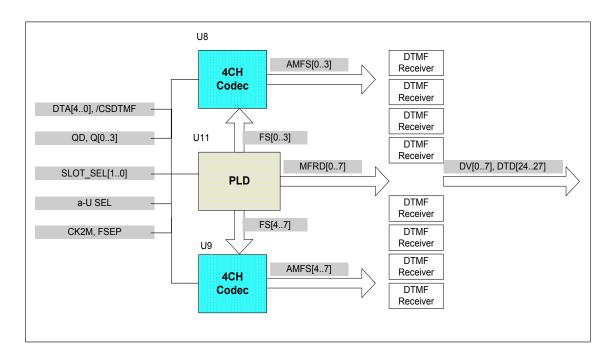
θ Топология платы.


θ Функции светодиодов.

Обозначение		Описание	Рабочее состояние		
1	диода АСТ	Плата работает	Активное	ВКЛ	
2	PB	Состояние шины	Передача/прием данных	ВКЛ/ОТКЛ	
3	SW1	Операционная система	Нормальная работа	ВКЛ/ОТКЛ	
4	SW2	Определяется программно	Активное	ОТКЛ	
4	3002	Определяется программно	Ожидание	ВКЛ/ОТКЛ	
5	SW3	Определяется программно	Активное	ОТКЛ	
3	OVVO	определиется программию	Ожидание	ВКЛ/ОТКЛ	
6	SW4	Определяется программно	Активное	ОТКЛ	
Ü	OVV	определиется программию	Ожидание	ВКЛ/ОТКЛ	
7	SW5	Определяется программно	Активное	ОТКЛ	
,	0110	определиется программите	Ожидание	ВКЛ/ОТКЛ	
8	LANRX	Индикатор получения данных LAN	Прием данных	ВКЛ/ОТКЛ	
9	LANTX	Индикатор передачи данных LAN	Передача данных	ВКЛ/ОТКЛ	
10	DISK	Индикатор доступа к внешнему диску	Доступ	ВКЛ/ОТКЛ	
11	DTMF	Индикатор получения данных DTMF	Прием данных	ВКЛ/ОТКЛ	
12	SIO1	Индикатор передачи/приема SIO 1	Передача/прием данных	ВКЛ/ОТКЛ	
13	SIO2	Индикатор передачи/приема SIO 2	Передача/прием данных	ВКЛ/ОТКЛ	
14	SIO3	Индикатор передачи/приема SIO 3	Передача/прием данных	ВКЛ/ОТКЛ	

θ Описание переключателей.

SW1: Перезапуск системы.


блок-схема СРМ.

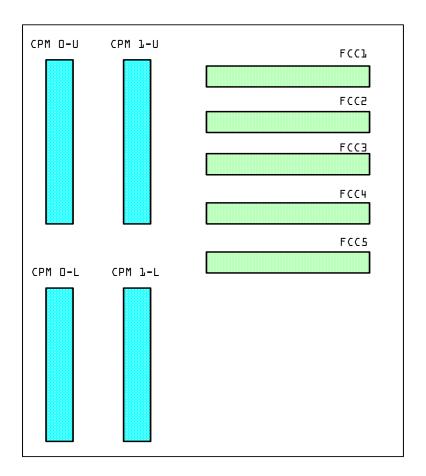
Примечание: CPU — центральный процессор; Booting PROM — загрузочное ППЗУ; DRAM — динамическое ОЗУ; DTMF Receiver (8 port) — 8-портовый приемник DTMF; Switch Block — блок коммутации; PB & Tone generation block — блок параллельной шины и тональных сигналов; Redundancy Control Block — блок резервирования; System clock generation block — блок выработки системных частот; System Alarm Control block — блок наблюдения за сбоями в системе; Calendar (system clock control block) — календарь (блок управления системными часами); LAN/SIO Interface block — блок интерфейса LAN/SIO; DISK Interface block — блок интерфейса диска; TX, RX и т.п. — системные сигналы; Flash Disk (8M/16M Flash Memory) — флэш-диск (флэш-память на 8 или 16 Мбайт).

4.3 Плата DTRU.

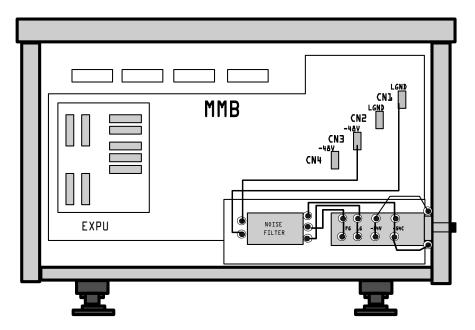
Плата DTRU, является платой расширения, устанавливаемой в CPM (CPM2). Количество данных плат в системе можно довести до 4 для увеличения количества DTMF приемников. Плата вставляется в разъем для 72-контактных SIMM модулей и количество установленных плат конфигурируется в CPM. Каждая плата расширения вырабатывает сигнал с помощью которого CPM способна определить количество DTMF приемников, установленных в системе.

Примечание: а-µ SEL: Переключатель закона квантования а-или µ.

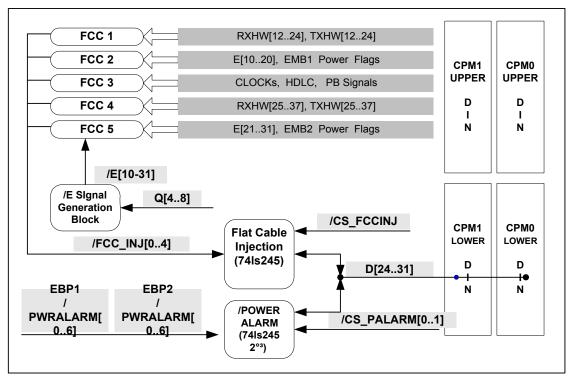
4.4 Плата EXPU.


θ Общие сведения.

Если система STAREX-CS оборудована EMB, плата EXPU используется для подключения линейных шин, сконфигурированных в EMB к основной плате управления (CPM) с помощью плоского соединительного кабеля (FCC), используемого для обмена сигналами MMB и EMB.


EXPU выполняет следующие функции: выработка сигнала /Е для LB и передача его к EMB1 и EMB2, детектирование сигнала предупреждения о сбое в питании, вырабатываемого модулями питания EMB1/EMB2, и передача его в CPM.

Плата EXPU вставляется со стороны MMB, напротив CPM.


в Топология платы.

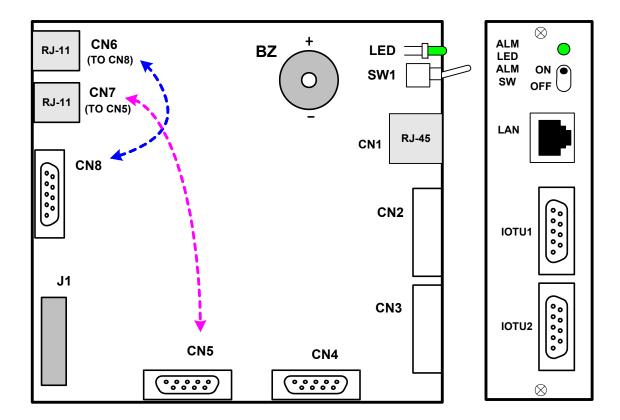
в Схема установки EXPU.

θ Блок-схема EXPU.

4.5 Плата IOTU.

ө Общие сведения.

Плата IOTU расположена слева на задней панели системы. В ее состав входят 3 порта системы ввода/вывода (I/O), сконфигурированные в CPM и 1 порт LAN, а также зуммер.


ө Основные функции.

Интерфейс подключения системы ввода/вывода (RS-232C 9-контактный): 5 шт.

- Системных: 3 шт.
- Для линейных плат: 2 шт.

Интерфейс подключения LAN (RJ45, 10 base T Ethernet): 1. Система сигнализации аварий: светодиод, переключатель, зуммер.

θ Топология платы.

θ Описание разъемов платы IOTU.

Функция ввода/вывода	№ разъема	Номенклатура Описание функции		Подключение
LAN	CN1	RJ-45	Режим «сеть»: перемычка JP1~4 установлена в режим «сеть»	Подключение через HUB
	CNT	RJ-45	Режим «пользователь»: JP1~4 установлена в режим «пользов.»	Прямое подключение к PC
Система	CN2 RS-232C (9K) IOT1: Отладка системы		Гальванически развязан	
	CN3	RS-232C (9K)	IOT2: Внешняя VMS	Гальванически развязан
	CN4	RS-232C (9K)	ІОТ3: Тарификация	
1 отладка LB1	CN5	RS-232C (9K)	Отладка линейной платы 1	
	CN7 RJ-11 Отладка линейной платы 1			
2 отладка LB1	CN6	RJ-11	Отладка линейной платы 2	
	CN8	RS-232C (9K)	Отладка линейной платы 2	
Управление	J1	2 ряда x 10 K	Управляющие сигналы – сигнализация, сигналы I/O	Подключение к разъему CN8 MMB

ө Описание функции сигнализации.

В случае сбоя: Блок управления системой (СРМ) в неактивном режиме.

Устройство	Описание функции	Режим работы		
SW1	Выбор отслеживания сбоев	ВКЛ	Выбор отслеживания сбоев	
LED1	Отслеживание сбоев ВКЛ	ВКЛ	Обнаружение сбоя	
Вz (зуммер)	Отслеживание сбоев	ВКЛ/ВЫКЛ	Обнаружение сбоя	

4.6 Плата ASLC.

ө Общие сведения.

Плата аналоговых абонентов ASLC является платой, к которой подключаются до 32 линий аналоговых однолинейных телефонов (SLT).

θ Основные функции.

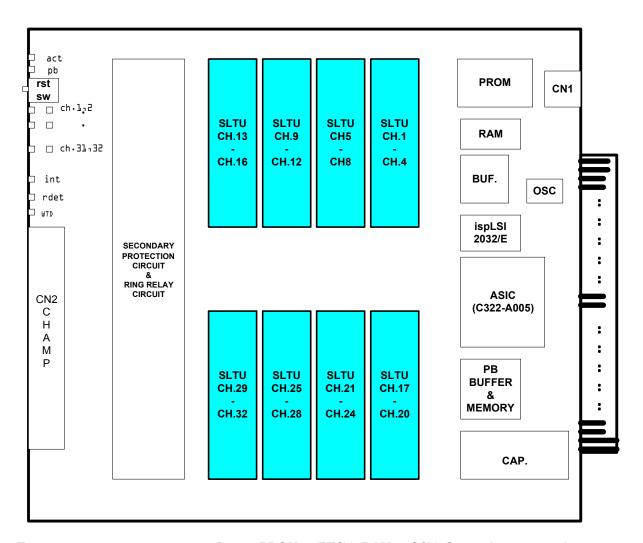
Рекомендация ITU-Т по электрической спецификации Q.500.

Подключаемое оборудование : Однолинейный телефон (SLT). Обслуживание 32 линий : 8 SLTU по 4 линии в каждом.

Длина кабеля : Сопротивление шлейфа 1200 Ω (Около

6 км, AWG #24).

Тип индуктора : Несбалансированный.

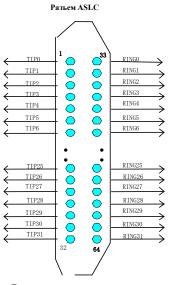

Защита : Цепь защиты от перегрузки по

току/напряжению (вариант: EPU-A).

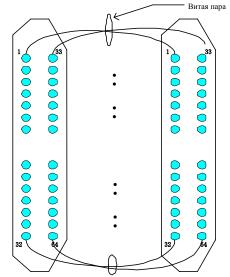
Напряжение : -54 В (Потребляемый ток 30 мА/линия). Определение вызова, мониторинг снятия трубки, определение набора номера.

Количество параллельно соединенных терминалов в цепи: 4

б Топология платы.


Примечание: rst sw — кнопка сброса; PROM — ППЗУ; RAM — ОЗУ; Secondary protection circuit and ring relay circuit — вторичная цепь защиты и цепь задержки звонков; CN — разъем; CH — канал; buffer and memory — буфер и память.

ө Описание функций светодиодов.


Функция	Номер	Наимен.	Описание	Рабочее состояние	
	1	BASE	Состояние платы	Нормальное	Мигание
	2	MTRX	Состояние шины	Отправка/прием	Мигание
Состояние	19	INT	Прерывание ЦП	Состояние	Мигание
платы	20	RDET	Определение звонка	Нормальный вызов	ВКЛ
	21 WTD	Суомо оомоконтроля	нормальный	выкл	
	21	VVID	WTD Схема самоконтроля	не нормальный	вкл
Состояние	3~18 справа	CH1~16	Мониторинг состояния 32	В использовании	вкл
абонентов	22~37	CH17~32	абонентов	р использовании	ומם
	слева				

Примечание — Схема самоконтроля активизируется при сбое в работе основного процессора.

- 0 Описание переключателей.SW1: Перезапуск платы ASLC.
- θ Соединение проводов.

Разводка сигналов разъема

Подключение проводов для соединения ASLC и EPU-A

Рисунок – Назначение контактов разъема ASLC и метод подключения.

- ө Конфигурирование платы.
 - 1. Установка платы.

Плата ASLC может быть установлена в любое платоместо, но

- ▶ Если плата ASLC установлена в LB1 и нет никакой платы в LB2, доступны все 32 порта.
- ➤ Если плата ASLC установлена как в LB1, а в LB2 установлена какая-либо другая плата, доступны только 16 портов.
- ▶ Если плата ASLC установлена в LB2, доступны только 16 портов.
- 2. Генерация данных с помощью программы CS-OMS (система управления и обслуживания).
 - 1) Запустите программу CS-OMS.
 - 2) Выберите пункт [Data Management].
 - 3) Выберите пункт [2. System Data].
 - 4) Выберите пункт [2.2 System Local Board Information].
 - 5) Поместите мышку на нужном слоте и кликните правой кнопкой.
 - 6) Выберите пункт [ASLC] в меню [Board Exchange] или [Board Type view].
 - 7) Выберите пункт [Send] на информационном экране "Local Board Information".
 - 8) Кликните правой кнопкой на выбранной плате и выберите пункт [Board Data Generation].
 - 9) Введите нужные данные или исправьте существующие и выберите пункт [Verify].
- 10) Выберите пункт [Send] для передачи данных в систему.
- 11) Выберите пункт [Query] для подтверждения нормальной передачи данных.

4.7 Плата ASLC-MW.

θ Общие сведения.

Плата аналоговых абонентов с функцией message-wait (ожидание сообщений) ASLC-MW является платой расширения, на которую подключаются 32 линии аналоговых однолинейных телефонов (SLT) с функцией ожидания сообщений.

θ Основные функции.

Рекомендация ITU-Т по электрической спецификации Q.500.

Подключаемое оборудование : Однолинейный телефон с функцией

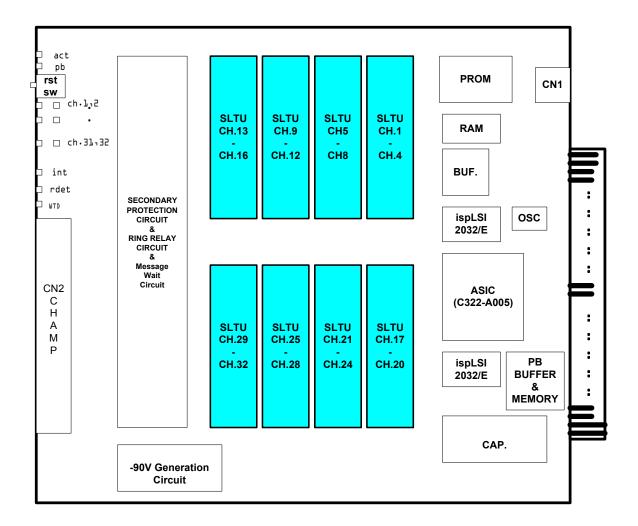
ожидания сообщений (SLT-MW).

Обслуживание 32 линий : 8 SLTU по 4 линии в каждом.

Длина кабеля : Сопротивление шлейфа 1200 Ω (Около

6 км, AWG #24).

Тип индуктора : Несбалансированный. Количество параллельно подключенных терминалов к линии: 4.

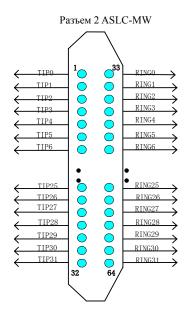

Защита : Цепь защиты от перегрузки по

току/напряжению (вариант: EPU-A).

Напряжение : -54 В (Потребляемый ток 30 мА/линия). Определение вызова, мониторинг снятия трубки, определение набора номера.

Напряжение питания системы ожидания сообщений: -90 В.

в Топология платы.


Примечание: rst sw — кнопка сброса; PROM — ППЗУ; RAM — ОЗУ; Secondary protection circuit and ring relay circuit and message wait circuit — вторичная цепь защиты и цепь задержки звонков и цепь ожидания сообщений; CN — разъем; CH — канал; buffer and memory — буфер и память.

ө Описание функций светодиодов.

a companie de la comp					
Функция	Номер	Наимен.	Описание	Рабочее состояние	
	1	BASE	Состояние платы	Нормальное	Мигание
	2	MTRX	Состояние шины	Отправка/прием	Мигание
Состояние	19	INT	Прерывание CPU	Состояние	Мигание
платы	20	RDET	Определение звонка	Нормальный вызов	ВКЛ
	21	WTD	C	нормальный	выкл
	21	VVID	Схема самоконтроля	не нормальный	ВКЛ
Состояние	3~18 справа	CH1~16	Мониторинг	В мотоги совремии	DVII
абонентов	22~37 слева	CH17~32	состояния 32 абонентов	В использовании	ВКЛ

Примечание – Схема самоконтроля активизируется при сбое в работе основного процессора.

- 0 Описание переключателей.SW1: Перезапуск платы ASLC-MW.
- ө Соединение проводов.

Назначение контактов разъема ASLC-MW

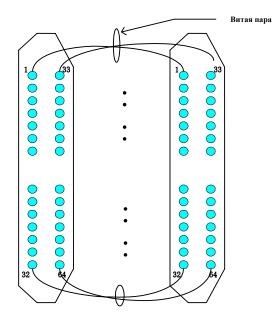


Диаграмма кабельного соединения ASLC-MW и EPU-A

Рисунок – Назначение контактов разъема ASLC-MW и метод подключения.

- ө Конфигурирование платы.
 - 1. Установка платы.

Плата ASLC-MW может быть установлена в любое платоместо, но:

- ➤ Если плата ASLC-MW установлена в LB1, и нет никакой платы в LB2, доступны все 32 порта.
- ➤ Если плата ASLC-MW установлена как в LB1, а в LB2 присутствует какаялибо другая плата, доступны только 16 портов.
- ➤ Если плата ASLC-MW установлена в LB2, доступны только 16 портов.
- 2. Генерация данных с помощью программы CS-OMS. То же, что и для платы ASLC.

4.8 Плата DSLC-LGP.

θ Общие сведения.

Плата цифровых абонентов для телефона LGP Keyphone (DSLC-LGP) устанавливается в абонентское платоместо для обеспечения различных голосовых и цифровых коммуникационных функций, таких как цифровой телефон, прямой доступ к абоненту (DSS), передача цифровых данных и пр.

θ Основные функции.

Соединение с терминалом цифрового абонента (терминал LGP: только голос, комбинированный голос/данные).

• LGP210, LGP30D, LGP44D.

Соединение DSS.

Структура пакета данных : 2B+D (144 kbps) / 16 каналов. Метод передачи данных : Дуплексный, пакетный режим.

Количество портов на плате : 16 портов.

Расстояние передачи : 800 м (Кабель: AWG #24).

Напряжение в линии : - 54 В.

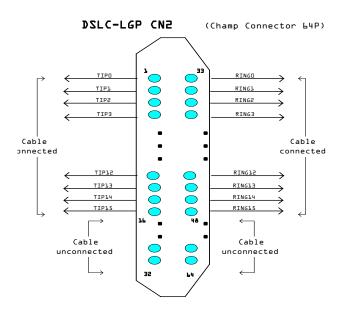
Самодиагностика. Внутренний заворот. Заворот через терминал.

в Топология платы.

Примечание: Тип батареи: Ni/Cd 3/B 60R (Производитель: VARTA).

Учрежденческо-производственная АТС

STAREX-CS


θ Описание функций светодиодов.

Функция	Nº	Наимен.	Описание	Рабочее сос	тояние
Состояние	1	ACT	Состояние платы	Нормальное	Мигает
платы	2	РВ	Состояние шины	Передача/прием	Мигает
Состояние	3~10	CH0~7	Мониторинг состояния 16	Подключено	ВКЛ
абонента	справа	CI 10 ·7	абонентов	Используется	Мигает
	11~18	CH8~15			
СГ	слева	C11015			

ө Описание переключателей.

№ переключателя	тип	Описание
SW1	Выключатель	Отметка (□) : Батарейка включена
3001	Быключатель	Нет отметки: Батарейка отключена
SW2	Кнопка	Используется для сброса платы DSLC-LGP

ө Подключение кабеля.

Контакт "tip" объединяется в пару с контактом "ring", и эта пара подключается к терминалу телефона LGP keyphone. Как видно на рисунке, 16 таких пар

ВЕРСИЯ 1.00

образуют 16 каналов.

Примечание: Кабель не должен касаться проводов питания 110V/230V AC.

Поскольку на плате отсутствует цепь защиты от перегрузки, обратите внимание на правильное подключение кабеля.

- ө Конфигурирование платы.
 - 1. Установка платы.

Плата DSLC-LGP может быть установлена в любую LB, за исключением LB2.

- ➤ Если плата DSLC-LGP установлена в LB1, и нет никакой платы в LB2, доступны все 16 портов.
- ➤ Если плата DSLC-LGP установлена как в LB1, а в LB2 установлена какаялибо другая плата, доступны только 8 портов.
- 2. Генерация данных с помощью программы CS-OMS.
 - 1) Запустите программу CS-OMS.
 - 2) Выберите пункт [Data Management].
 - 3) Выберите пункт [2. System Data].
 - 4) Выберите пункт [2.2 System Local Board Information].
 - 5) Поместите мышку на нужном слоте и кликните правой кнопкой.
 - 6) Выберите пункт [[DSLC-LGP] в меню [Board Exchange] или [Board Type view].
 - 7) Выберите пункт [Send] на информационном экране LB.
 - 8) Кликните правой кнопкой на выбранной плате и выберите пункт [Board Data Generation].
 - 9) Введите нужные данные или исправьте существующие и выберите пункт [Verify].
- 10) Выберите пункт [Send] для передачи данный в систему.
- 11) Выберите пункт [Query] для подтверждения нормальной передачи данных.

4.9 Плата DSLC-LKD.

ө Общие сведения.

Плата цифровых абонентов DSLC-LKD устанавливается в абонентское платоместо для обеспечения функций цифрового телефона и DSS. (В настоящее время возможна только голосовая связь в режиме 1B+D.)

ө Основные функции.

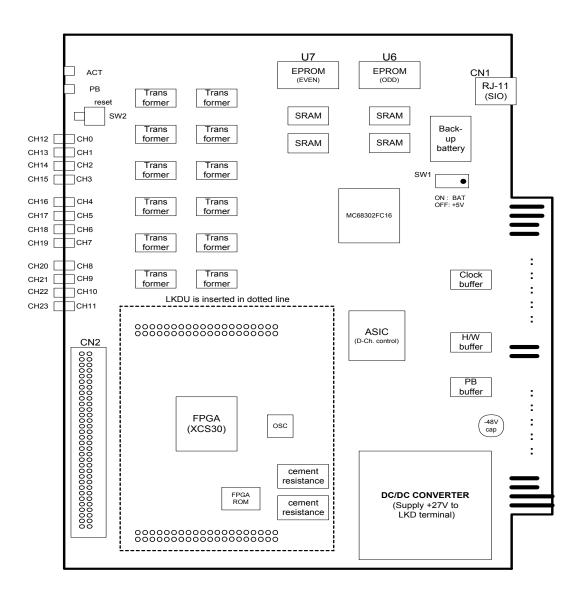
Соединение с терминалом цифрового абонента (терминал серии LKD).

Соединение DSS.

Структура пакета данных : 1B+D (80 kbps).

Количество линий на плате : Базовая конфигурация - 12 каналов.

Расширяется еще 12 каналами с помощью


Платы DSLC-LKDU.

Метод передачи данных : Дуплексный, пакетный режим. Расстояние передачи : 300 м (Кабель: AWG #24.)

Напряжение : + 27 В (источник питания смонтирован на

плате).

б Топология платы.

Примечание: Тип батареи: Ni/Cd 3/B 60R (Производитель: VARTA).

θ Описание функций светодиодов.

Функция	Номер	Наимен.	Описание	Рабочее сос	гояние
Состояние	1	ACT	Состояние плты	Normal	Мигает
платы	2	PB	Состояние шины	Передача/прием	Мигает
Состояние	3~14 справа	CH0 ~CH11	Мониторинг состояния 12 абонентов (DSLC-LKD)	Используется	ВКЛ
абонента	15~26 слева	CH12 ~CH23	Мониторинг состояния 12 абонентов (DSLC-LKD)	Используется	ВКЛ

ө Описание переключателей.

№ переключателя	тип	Описание
SW1	Выключатель	Отметка (□) : Батарейка включена
SVVI	Быключатель	Нет отметки: Батарейка отключена
SW2	Кнопка	Используется для сброса платы DSLC-LKD

ө Подключение кабеля.

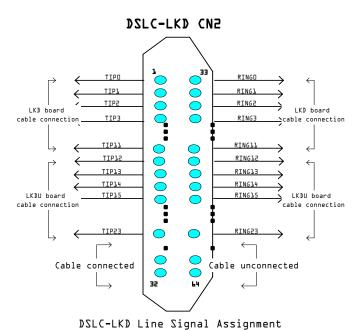


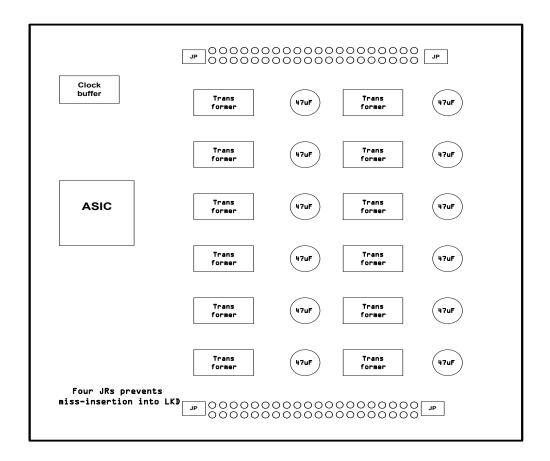
Рисунок. Назначение сигналов разъема платы DSLC-LKD.

Контакт "tip" объединяется в пару с контактом "ring", и эта пара подключается к телефону LGP key-phone. Как видно на рисунке, 24 такие пары образуют 24 канала.

Примечание: Кабель не должен касаться проводов питания 110V/230V AC.

Поскольку на плате отсутствует цепь защиты от перегрузки, обратите внимание на правильное подключение кабеля.

- ө Конфигурирование платы.
 - 1. Установка платы.


Плата DSLC-LKD может быть установлена в любую LB, за исключением LB2.

- ➤ Если плата DSLC-LKD установлена в LB1, и нет никакой платы в LB2, доступны все 24 порта.
- ▶ Если плата DSLC-LKD установлена в LB1, а в LB2 установлена какая-либо другая плата, доступны только 12 портов.
- 2. Генерация данных с помощью программы CS-OMS.
 - 1) Запустите программу CS-OMS.
 - 2) Выберите пункт [Data Management].
 - 3) Выберите пункт [2 System Data].
 - 4) Выберите пункт [2.2 System Local Board Information].
 - 5) Поместите мышку на нужном слоте и кликните правой кнопкой.
 - 6) Выберите пункт [DSLC-LKD] в меню [Board Exchange] или [Board Type view].
 - 7) Выберите пункт [Send] на информационном экране "Local Board Information".
 - 8) Кликните правой кнопкой на выбранной плате и выберите пункт [Board Data Generation].
 - 9) Введите нужные данные или исправьте существующие и выберите пункт [Verify].
- 10) Выберите пункт [Send] для передачи данный в систему.
- 11) Выберите пункт [Query] для подтверждения нормальной передачи данных.

4.10 Плата DSLC-LKDU.

ВЕРСИЯ 1.00

- Общие сведения.
 Плата DSLC-LKDU является платой расширения терминала LKD, она устанавливается в плату DSLC-LKD и позволяет подключить дополнительно 12 терминалов цифровых телефонов и DSS.
- θ Топология платы DSLC-LKDU.

4.11 Плата BRIC.

ө Общие сведения.

Плата абонентов ISDN (BRIC) является платой, поддерживающей ISDN BRI (интерфейсы S/T).

Плата оснащена 4 портами (2B+D/порт) и позволяет поддерживать до 16 портов при подключении к ней плат BRIU, поддерживающих 4 порта. Плата может поддерживать как S, так и T интерфейс всеми 4 портами, либо комбинацию S/T интерфейсов.

ө Основные функции.

ISDN BRI S/Т –интерфейсы.

4-портовая плата с возможность выбора S или T интерфейса (1 порт: 2B+D).

4 порта в базовой конфигурации, максимум 16 портов.

Возможность выработки собственной частоты для линейной синхронизации при использовании Т-интерфейса.

в Спецификация аппаратного обеспечения.

• Совместимость со стандартами : ITU-T I.430, ETSI 300 012 и TBR3.

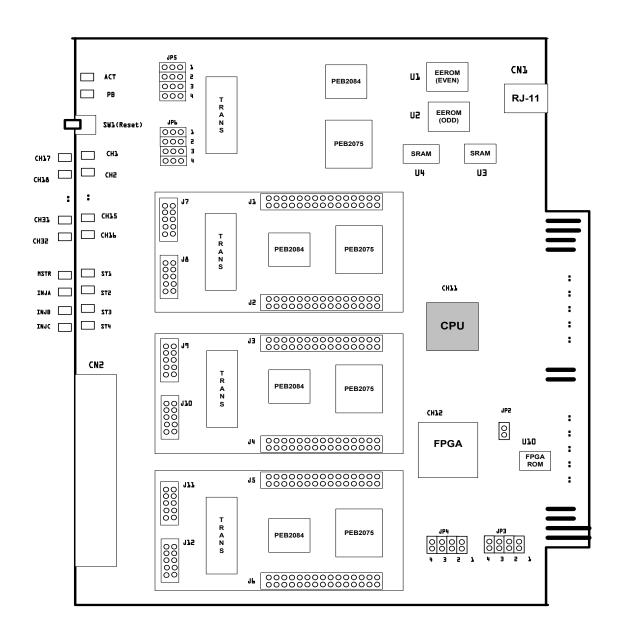
Скорость : 192 Кбит/с (2B+D).

Линейное кодирование : AMI.

• S-интерфейс (NT: Сетевой режим), Т-интерфейс (ТЕ: Абонентский режим).

Терминал ISDN, система видеоконференций, подключение к маршрутизатору ISDN, ISDN общего доступа, выделенные линии.

Расстояние связи: В пределах 1 км (режим точка-точка).


Тип подключения: Разъем типа «Сhamp.» (64 линии).

ө Установка.

S интерфейс = поддерживает 16 терминалов.

Т интерфейс = поддерживает 32 порта.

в Топология платы.

Учрежденческо-производственная АТС

STAREX-CS

θ Функции светодиодов.

Светодиоды платы BRIC можно функционально разделить на 3 группы. Два светодиода показывают общее состояние каждой платы; 32 светодиода показывают состояние абонентских каналов; и 8 светодиодов – состояние линий.

Функция	Nº	Наимен	Описание	Рабочее состояние	
0	2	ACT	Состояние платы	Нормальное	Мигает
Состояние	3	РВ	Состояние шины данных	Передача и прием	Мигает
Состояние	4~19 Справа	CH1~ 16	Индикаторы мониторинга линий 32	Manage average	вкл
абонента	24~39 Слева	CH17~32	абонентов	Используется	DIVI
	20	ST1	Порт 1 ~ Порт 4: выбор S/T интерфейса	S-интерфейс	вкл
	21	ST2	Порт 5 ~ Порт 8: выбор S/T интерфейса	S-интерфейс	вкл
	22	ST3	Порт 9 ~ Порт 12: выбор S/T интерфейса	S-интерфейс	вкл
Состояние	23	ST4	Порт 13 ~ Порт 16: выбор S/T интерфейса	S-интерфейс	вкл
линии	40	MSTR	Выделение тактовой частоты	Рабочее	вкл
	41	INJ A	Установка платы BRIU (Порты 5 - 8)	Установлена	вкл
	42	INJ B	Установка платы BRIU (Порты 9 - 12)	Установлена	вкл
	43	INJ C	Установка платы BRIU (Порты 13 - 16)	Установлена	вкл

θ Описание переключателей.

Перемычка JP2: Выбор интерфейса S/T (JU1 для платы BRIU).

JP №.	ЈР состояние	Function descriptions
JP2	ЗАМКНУТО	Выбор S интерфейса ISDN BRI
01 2	РАЗОМКНУТО	Выбор Т интерфейса ISDN BRI

ө Перемычки JP3, JP4.

Подача электропитания 4-портовой платой BRI (только для Т-интрефейса).

JP 3.	JP 4.	Function descriptions
	ЈР4-1 ЗАМКНУТ	Подача питания к портам 1 ~ 4 BRI.
ЈРЗ ЗАМКНУТ	ЈР4-2 ЗАМКНУТ	Подача питания к портам 5 ~ 8 BRI.
JF J JAWKI IJ I	ЈР4-3 ЗАМКНУТ	Подача питания к портам 9 ~ 12 BRI.
	ЈР4-4 ЗАМКНУТ	Подача питания к портам 13 ~ 16 BRI.

Подающееся напряжение электропитания: -40 В.

θ Перемычки JP5, JP6 (100 Ω Окончания).

(JP2, JP3 для BRIU).

JP №.	Состояние перемычки	Описание функции
JP5-1,JP5-2	РАЗОМКНУТА	Нет 100 Ω окончания для порта 1 BRI.
JFJ-1,JFJ-2	ЗАМКНУТА	Есть 100 Ω окончание для порта 1 BRI.
JP5-3,JP5-4	РАЗОМКНУТА	Нет 100 Ω окончания для порта 2 BRI.
JFJ-3,JFJ- 4	ЗАМКНУТА	Есть 100 Ω окончание для порта 2 BRI.
JP6-1,JP6-2	РАЗОМКНУТА	Нет 100 Ω окончания для порта 3 BRI.
3F0-1,3F0-2	ЗАМКНУТА	Есть 100 Ω окончание для порта 3 BRI.
JP6-3.JP5-4	РАЗОМКНУТА	Нет 100 Ω окончания для порта 4 BRI.
3F0-3,3F3-4	ЗАМКНУТА	Есть 100 Ω окончание для порта 4 BRI.

ө Подключение кабеля.

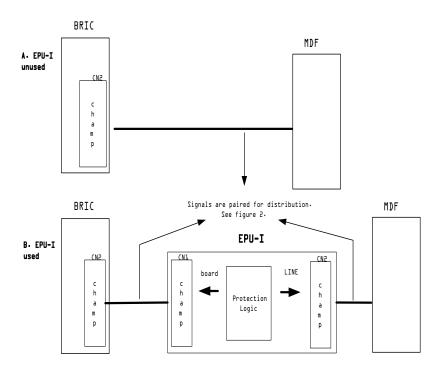
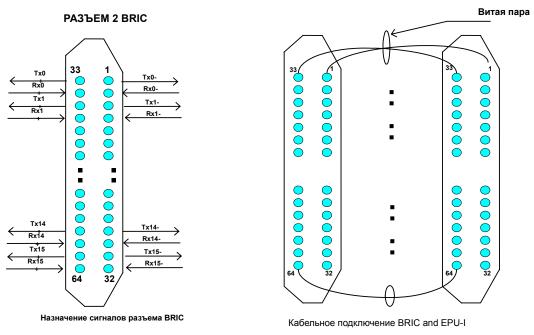
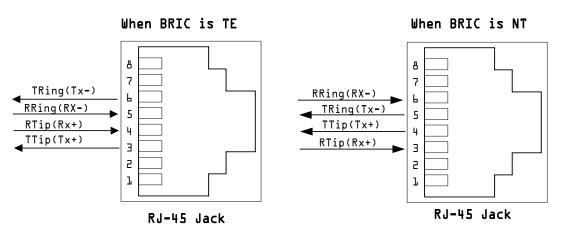
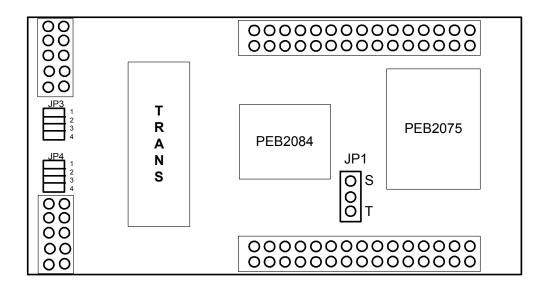




Рисунок – схема подключения кабеля.

ө Разъем типа «Сhamp» (64-контактный).

Назначение сигналов разъема платы BRIC и его подключение.


Назначение сигналов разъема RJ-45 (режимы TE,NT).

- ө Конфигурирование платы.
 - 1. Установка платы.

Плата BRIC может быть установлена в любую LB, за исключением LB2.

- Плата BRIC не может быть установлена в LB1, если в LB2 уже установлена какая-либо другая плата.
- 2. Генерация данных с помощью программы CS-OMS.
 - 1) Запустите программу CS-OMS.
 - 2) Выберите пункт [Data Management].
 - 3) Выберите пункт [2 System Data].
 - 4) Выберите пункт [2.2 System Local Board Information].
 - 5) Поместите мышку на нужном слоте и кликните правой кнопкой.
 - 6) Выберите пункт [BRIC] в меню [Board Exchange] или [Board Type view].
 - 7) Выберите пункт [Send] на информационном экране "Local Board Information".
 - 8) Кликните правой кнопкой на выбранной плате и выберите пункт [Board Data Generation].
 - 9) Введите нужные данные или исправьте существующие и выберите пункт [Verify].
- 10) Выберите пункт [Send] для передачи данный в систему.
- 11) Выберите пункт [Query] для подтверждения нормальной передачи данных.

- Плата BRIU.
 Плата BRIU, является BRI-расширением платы BRIC, поддерживающим дополнительные 4 порта.
- ө Топология платы BRIU.

4.12 Плата АРТС.

θ Общие сведения.

Плата аналоговых абонентских соединительных линий PSTN (APTC), является платой CO, соединяющей до 16 аналоговых CO линий. Число линий может быть увеличено с помощью 4-линейных плат ATCU. С помощью APTC выбираются платы для линий тарификации тональными импульсами 12Кгц/16Кгц (ATCU-TR) и для линий распознавания тональных посылок (CPTU).

θ Основные функции.

Плата соответствует стандартам ITU-T Q.500.

Аналоговое СО соединение.

Доступно 16 линий: выберите и установите платы ATCU и ATCU-TR (до 4 плат).

Сопротивление постоянному току

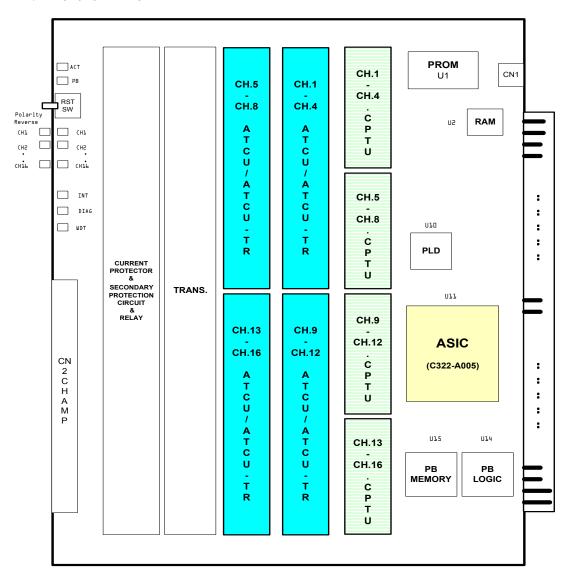
: $220\Omega - 20 \text{ MA} \sim 300\Omega - 30$

мA.

Минимальное напряжение обнаружения звонка : 30 В.

Защита: Цепь защиты от перегрузки по току и напряжению (Вариант: EPU-A).

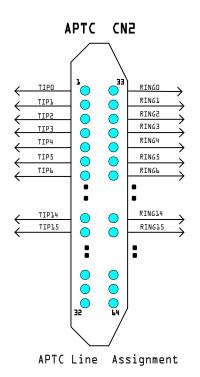
Обнаружение звонка, мониторинг реверсирования полярности, реверсирование полярности.

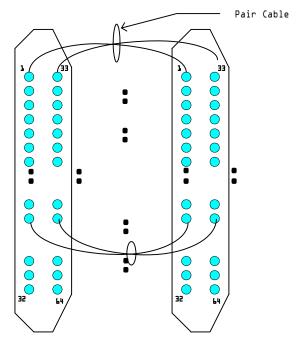

Мониторинг распознавания тональных посылок: CPTU.

Мониторинг тарификационных тональных импульсов (12/16 Кгц): ATCU-TR.

Примечание: Устанавливается не более четырех CPTU – 4 линии.

№ CPTU	№ канала CPTU	№ разъема
CPTU 1	Канал 1 ~ Канал 4	JP2, JP3
CPTU 2	Канал 5 ~ Канал 8	JP4, JP5
CPTU 3	Канал 9 ~ Канал 12	JP6, JP7
CPTU 4	Канал 13 ~ Канал 16	JP8, JP9


ө Топология платы.



θ Описание функций светодиодов.

Функция	Nº	Наимен.	Описание	Рабочее состоя	эние
	1	BASE	Состояние платы	Нормальное	Мигает
	2	MTRX	Состояние шины данных	Передача и прием	Мигает
Состояние	19	INT	Прерывание CPU	Присутствует	Мигает
платы	20	DIAG	Диагностика полярности	Нормальное	выкл
				Нормальное	выкл
2	21	WDT	Схема самоконтроля	Присутствует (нарушение)	ВКЛ
Состояние	3~18 Справа	CH1~16	Индикаторы мониторинга 16 портов	Используется	ВКЛ
абонента	2~17 Слева	CH1~16	Мониторинг 16 портов на реверсирование полярности	Реверсирование полярности	ВКЛ

- 0 Описание переключателей.SW1: Сброс платы.
- θ Подключение кабеля.

Cable diagram between APTC and EPU-A board

- ө Конфигурирование платы.
 - 1. Установка платы.

Плата APTC может быть установлена в любую LB.

- 2. Генерация данных с помощью программы CS-OMS.
 - 1) Запустите программу CS-OMS.
 - 2) Выберите пункт [Data Management].
 - 3) Выберите пункт [2 System Data].
 - 4) Выберите пункт [2.2 System Local Board Information].
 - 5) Поместите мышку на нужном слоте и кликните правой кнопкой.
 - 6) Выберите пункт [APTC] в меню [Board Exchange] или [Board Type view].
 - 7) Выберите пункт [Send] на информационном экране "Local Board Information".
 - 8) Кликните правой кнопкой на выбранной плате и выберите пункт [Board Data Generation].
 - 9) Введите нужные данные или исправьте существующие и выберите пункт [Verify].
- 10) Выберите пункт [Send] для передачи данный в систему.
- 11) Выберите пункт [Query] для подтверждения нормальной передачи данных.

4.13 Плата ALTC.

ө Общие сведения.

Плата аналоговых соединительных линий ALTC является платой для подключения аналоговых соединительных линий (E&M, L/D, RD) и может расширяться и обслуживаться с помощью 4-линейных плат EMIU, LDIU, RDIU и COIU.

ө Основные функции.

Плата соответствует стандартам ITU-T Q.500.

Подключение аналоговых выделенных линий: E&M (наушник и микрофон), L/D (шлейфная двухсторонняя линия связи), R/D (полевой телефон), C/O (аналоговые двухпроводные линии).

Сопротивление постоянному току (платы LDIU, COIU): 220Ω –20 мА ~ 300Ω -30 мА. Минимальный ток обнаружения звонка (платы COIU, RDIU): 30 В.

Дальность действия: при сопротивлении цепи 2 К□ - около 11 км, кабель AWG #24).

Цепь защиты от перегрузки по току и напряжению (Вариант: EPU-A).

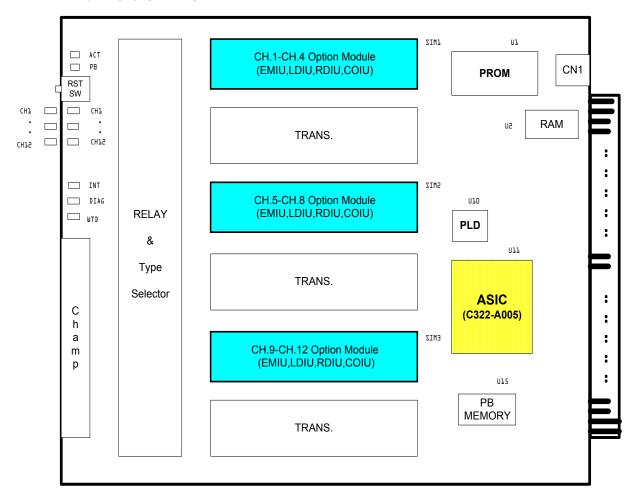
Обнаружение и обслуживание звонка, обнаружение и обслуживание реверсирования полярности.

Обнаружение и осуществление импульсного набора номера.

Распознавание типа интерфейса.

Поддерживание функций линий Е&М любого типа; реверсирование полярности по типу 1, 2, 4, 5.

Автоматическое распознавание дополнительных плат.


Количество линий:

Наимен. линии	Количество линий	Дополнительная плата		
		Наименование	Кол-во линий	
E&M (2W)	12 линий	EMIU	4 линии	
E&M (4W)	6 линий	EMIU	2 линии	
LD	12 линий	LDIU	4 линии	
RD	12 линий	RDIU	4 линии	
CO	12 линий	COIU	4 линии	

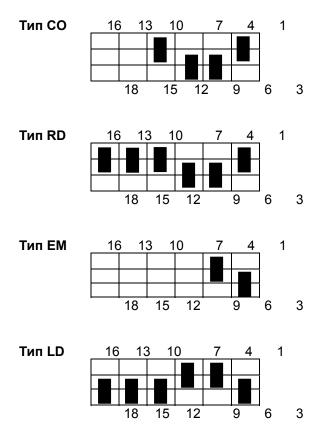
Линии 2W E&M и 4W E&M используют одну и ту же EMIU, которая

конфигурируется с помощью OMS.

в Топология платы.

Примечание: **RST SW** — кнопка сброса платы; **CH1-CH4 Option Module** — модуль выбора типа канала 1-4; **TRANS** — передатчик; **PROM** — ППЗУ; **RAM** — ОЗУ; **CN** — разъем; **CH** — канал; **INT** — прерывание; **DIAG** — диагностика; **Champ** — разъем типа "CHAMP"; **RELAY & Type Selector** — устройство для назначения времени задержки и типа каналов.

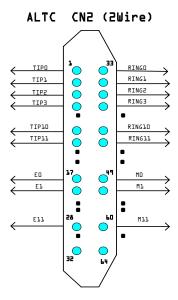
Учрежденческо-производственная АТС

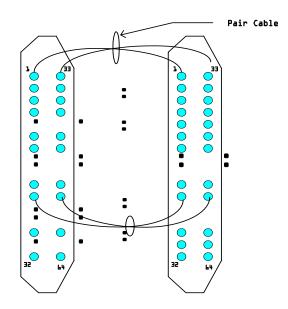

STAREX-CS

θ Описание функций светодиодов.

Функция	Nº	Наимен.	Описание	Рабочее состояние	
Состояние платы	28	BASE	Состояние платы	Нормальное	Мигает
	29	MTRX	Состояние шины данных	Передача/прием	Мигает
	25	INT	Прерывание CPU	Присутствует	Мигает
	26	DIAG	Первоначальная проверка качества канала на плате	Неисправно Исправно	ВКЛ ВЫКЛ
	27 WT	WTD	/TD Схема самоконтроля	Исправно	ВЫКЛ
		WID		Неисправно	ВКЛ
Состояние абонента	1~12 Справа	CH1 ~ 12	Индикаторы мониторинга 12 портов	Используется	ВКЛ
	13~24 Слева	CH1 ~ 12	Мониторинг 12 портов на реверсирование полярности	Получение ответного сигнала	ВКЛ

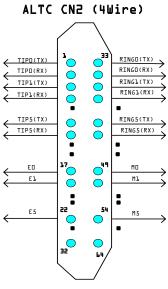
θ Описание переключателей:


УСТАНОВКА ПЕРЕКЛЮЧАТЕЛЕЙ по типу выделенной линии (JP1- JP12)

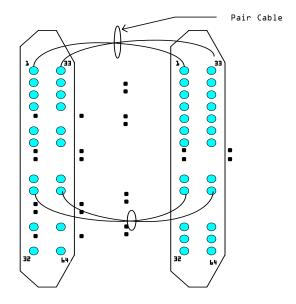

Примечание: ■ - ХВОСТОВИК - ПЕРЕМЫЧКА ЗАМКНУТА

ө Подключение кабеля.

Назначение сигналов разъема платы ALTC и подключение (2 провода).



ALTC Line Assignment



Cable diagram between ALTC and ETU-A board

Назначение сигналов разъема платы ALTC и подключение (4 провода).

ALTC Line Assignment

Cable diagram between ALTC and ETU-A board

- ө Конфигурирование платы.
 - 1. Установка платы.

Плата ALTC может быть установлена в любую LB.

- 2. Генерация данных с помощью программы CS-OMS.
 - 1) Запустите программу CS-OMS.
 - 2) Выберите пункт [Data Management].
 - 3) Выберите пункт [2 System Data].
 - 4) Выберите пункт [2.2 System Local Board Information].
 - 5) Поместите мышку на нужном слоте и кликните правой кнопкой.
 - 6) Выберите пункт [ALTC] в меню [Board Exchange] или [Board Type view].
 - 7) Выберите пункт [Send] на информационном экране "Local Board Information".
 - 8) Кликните правой кнопкой на выбранной плате и выберите пункт [Board Data Generation].
 - 9) Введите нужные данные или исправьте существующие и выберите пункт [Verify].
- 10) Выберите пункт [Send] для передачи данный в систему.
- 11) Выберите пункт [Query] для подтверждения нормальной передачи данных.

4.14 Плата ITGC.

ө Общие сведения.

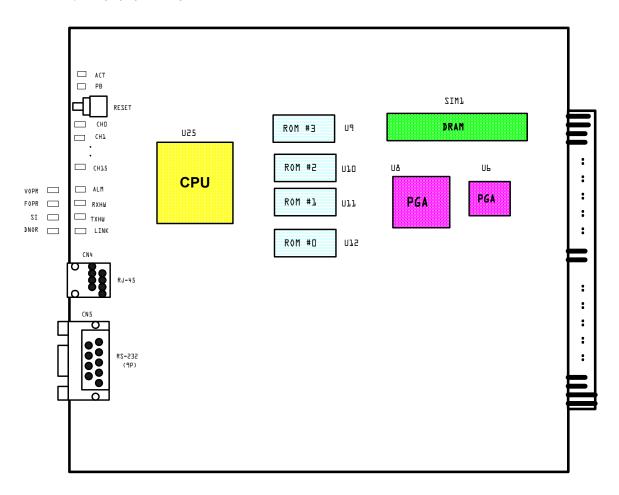
Плата интернет-телефонии (ITGC) является коммуникационной платой VoIP (голосовая связь по интернет протоколу) и работает по технологии интеграции голосовых и цифровых данных на основе IP (Интернет протокола). Плата ITGC преобразует данные PCM (максимум до 10 каналов на плату) в данные по стандартам G.723.1 и G.729A. Кроме того, плата обеспечивает сервисные функции для факса и, дополнительно, осуществляет опознавание сигнала DTMF и функцию эхоподавления ECHO, а также обслуживает звонки через интернет по протоколу H.323.

ө Основные функции

Шлюз интернет-телефонии : 10 линий.

Интерфейс VoIP : ITU-T H.323 V2.

Сжатие голосовых данных : преобразование по стандартам G.723.1 и


G.729A.

Служба факса : Т.38.

Интерфейс LAN: 1 порт Ethernet 10 Base-T (RJ-45).Интерфейс PSTN: PCM H/W (закон квантования µ или а).

Интерфейс консоли : RS-232C 1 порт (9-контактный).

θ Топология платы.

Учрежденческо-производственная АТС

STAREX-CS

θ Описание функций светодиодов.

Функция	Nº	Наимен.	Описание	Рабочее сос	тояние
	1	ACT	Состояние платы	Нормальное	Мигает
	2	РВ	Состояние шины данных	Send/receive	Мигает
Состояние	19	ALM	Индикатор сбоя в работе платы	Нормальное	выкл
платы	20	RXHW	Магистраль прием	Используется	Мигает
	21	TXHW	Магистраль передача	Используется	Мигает
	22	LINK	Соединение по протоколу Ethernet	Используется	ВКЛ
Состояние абонента	3~12	CH0 ~ CH9	Мониторинг состояния портов 10 каналов	Используется	вкл
Не используется	39	DNOR	АС481XXA-С 0~7 индикатор загрузки (если все DSP загружены нормально, "ВКЛ") 0 (ВКЛ): Все АС481-С загрузили программу DSP. 1 (ВЫКЛ): Хотя бы один из АС481-С не загрузил программу DSP		
	40	VOPR	Индикация кодирования или декодирования сигнала логикой вокодера (при наличии голосового сигнала, "ВКЛ") 0 (ВКЛ): Хотя бы на одном канале вокодера присутствует голосовой сигнал. 1 (ВЫКЛ): Голосовые сигналы отсутствуют на всех каналах вокодера.		
	41	FOPR	Индикация обработки сигнала фак наличии сигнала факса, "ВКЛ") 0 (ВКЛ): Хотя бы на одном канале во факса. 1 (ВЫКЛ): Сигнал факса отсутствует на	окодера присутств	вует сигнал

0 Описание переключателей.SW1: Сброс платы ITGS.

θ Подключение кабеля.

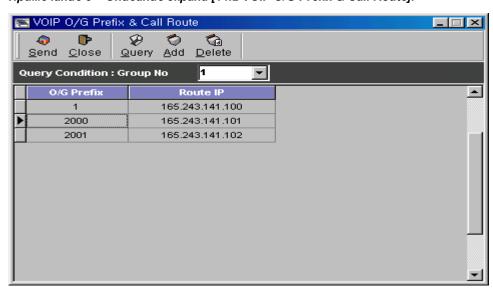
№ разъема	Тип разъема	Использование
CN 4	RJ-45	10 Base-T Ethernet
CN 5	RS-232C 9-контактный	Мониторинг платы ITGS

- 6 Конфигурирование платы.
 - 1. Установка платы.


Плата ITGC может быть установлена в любую LB.

Примечание 1 - Плата ITGC не может быть установлена в LB1, если в LB2 уже установлена какая-либо другая плата.

- 2. Генерация данных с помощью программы CS-OMS.
 - 1) Запустите программу CS-OMS.
 - 2) Выберите пункт [Data Management].
 - 3) Выберите пункт [2 System Data].
 - 4) Выберите пункт [2.2 System Local Board Information].
 - 5) Поместите мышку на нужном слоте и кликните правой кнопкой.
 - 6) Выберите пункт [ITGS] в меню [Board Exchange] или [Board Type view].
 - 7) Выберите пункт [Send] на информационном экране "Local Board Information".
- 8) Кликните правой кнопкой на выбранной плате и выберите пункт [Board Data Generation].
- 9) Введите нужные данные или исправьте существующие и выберите пункт [Verify].
- 10) Выберите пункт [Send] для передачи данный в систему.
- 11) Выберите пункт [Query] для подтверждения нормальной передачи данных.
- 12) Выберите пункт [14. VOIP Data].
- 13) Выберите пункт [14.1 VOIP OWN Identification] и [14.2 VOIP O/G Prefix & Call Route].
- 14) Введите нужные данные или исправьте существующие и выберите пункты [Change] and [Send].
- 15) Выберите пункт [Query] для подтверждения нормальной передачи данных.


Учрежденческо-производственная АТС

STAREX-CS

Примечание 2 – Описание экрана VOIP Own Identification.

- Group No: В системе может быть установлено до 2 групп VOIP, при этом каждой группе соответствует одна плата ITGC. Таким образом, в системе не может быть установлено более двух плат ITGC.
- Own IP: IP адрес платы ITGC.
- Net Mask: Маска сети.
- Default Route IP: IP адрес, используемый для инициации звонка, не имеющего префикс звонка, назначаемого в п.5 конфигурации системы.
- Coding Type: Тип стандарта преобразования голосовых сигналов в пакетные данные.
- Silence Compression: Выбор опции сжатия фонового шума.
- Frame/Packet Rate: Количество пакетов в модуле данных.
- Т301: Максимальное время ожидания ответа вызываемого абонента.
- Т302: Максимальное время ожидания сигнала "Alert" после инициализации процедуры вызова абонента.

Примечание 3 – Описание экрана [14.2 VOIP O/G Prefix & Call Route].

• O/G Prefix : Внешний префикс вызываемого абонента.

• Route IP : IP адрес вызываемого абонента.

θ Пример вводимых данных.

Первая цифра означает, что все звонки с номеров, имеющих цифру "1" в качестве первой цифры номера выхода на внешнюю линию, за исключением кода занятия соединительной линии (транка), направляются через IP адрес "165.243.141.100".

Вторая цифра означает, что все звонки с номеров, имеющих цифры 2, 0, 0, 0 в качества первых четырех цифр номера выхода на внешнюю линию, за исключением кода занятия соединительной линии (транка), направляются через IP адрес "165.243.141.101".

Примечание 4 — Звонки по соединительной линии через протокол VOIP доступны если указанные процедуры выполнены правильно и сгенерированы код доступа соединительной линии и группы соединительных линий.

Примечание 5 – Связанные с настройкой платы ITGC диалоговые окна (экраны).

- Таблица маршрутизации платы ITGS;
- Индексная таблица маршрутизации платы ITGS;
- Данные платы ITGS по умолчанию;
- IP адреса всех плат;
- Маска подсети для всех плат;
- Маршрутизация по умолчанию;
- Скорость передачи пакетов;
- Символ окончания номера;
- Таймер платы ITGS;
- Таймер платы ITGS;
- Канал платы ITGS;
- Тип голосовой кодировки платы ITGS;
- Значение Zitter;
- Значение задержки
- Проверка цикла задержки

4.15 Плата DNIC.

ө Общие сведения.

Плата цифровых соединительных линий (DNIC) выполняет функции цифровой линии связи (транка) E1/T1, а также, дополнительно, функции основного интерфейса передачи данных (PRI) ISDN 2048К/1544Кбит/с, и обеспечивает работу 1 потока.

θ Основные функции.

E1, T1 для CAS (ассоциативная сигнализация канала). ISDN PRI для 2048Кбит/с (30B+D), 1544Кбит/с (23B+D). Выделение тактовой частоты для сетевой синхронизации системы.

- ө Аппаратная спецификация: по стандартам ITU-T G.703, G.704, G.706, G.775, I.431 ETSI 300.011, TBR4, TBR12, TBR13.
 - Система передачи данных DTC (E1).

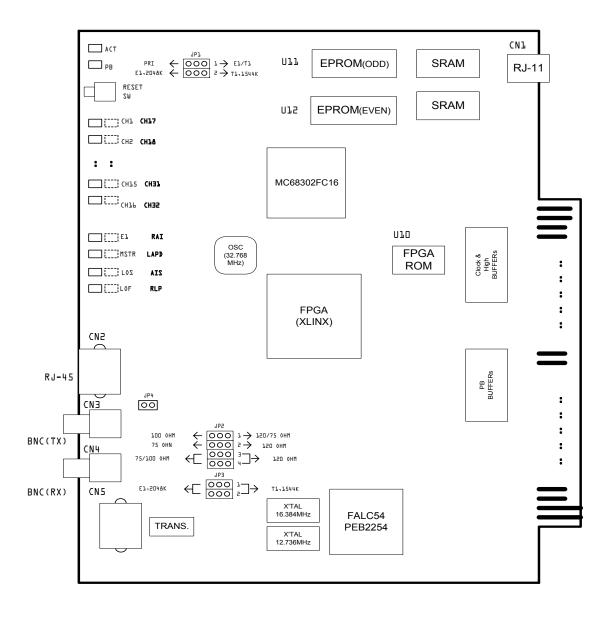
	E1	T1
Пакет	PCM 30 (CRC: Опция)	SF (D3/D4)
Линейное кодирование	HDB3	Избирательно AMI, B8ZS

• ISDN PRI.

	2048 Кбит/с	1544 Кбит/с
Пакет	PCM 30 CRC	ESF
Линейное кодирование	HDB3	B8ZS

Тип сетей: PSTN, ISDN, выделенная линия.

Функции:


- CAS (ассоциативная сигнализация канала): DID, DOD (прямой внутренний и внешний набор).
- ISDN PRI: 30B+D, 23B+D, поддержка режима пользователь/сеть (UNI).
- Q-sig протокол.

Расстояние связи: в пределах 180 м (кабель – витая пара AWG.24).

Тип соединения - E1: RJ-45, BNC.

T1: RJ-45.

ө Топология платы.

Учрежденческо-производственная АТС

STAREX-CS

 θ Описание функций светодиодов.

Светодиоды платы DNIC можно функционально разделить на три группы. Два светодиода отображают состояние каждой из плат; 32 светодиода отображают состояние каждого канала; и 8 светодиодов отображают состояние линий.

Функция	Nº	Наимен.	Описание	Рабочее состояние	
Состояние платы	1	ACT	Состояние платы	Нормальное	Мигает
	2	РВ	Состояние шины данных	Передача/прием	Мигает
Состояние	3~18 справа	Ch1~16	Канал ОЖИДАНИЕ/ЗАНЯТ	ТРНАЕ	ВКЛ
канала	24~39 слева	Ch17~32	Trailed Strong Williams	ОЖИДАНИЕ	ВЫКЛ
	19	E1	Выбор Т1 или Е1	T1	ВКЛ
	10	_'	Выбор режима генератора тактовой частоты (ВЕДУЩИЙ/ВЕДОМЫЙ)	E1	выкл
	20	MCTD		ВЕДУЩИЙ	ВЫКЛ
	20	MSTR		ВЕДОМЫЙ	ВКЛ
	21	04 100 05	05	Не обнаружен	вкл
	21	LOS	Обнаружение сигнала в линии	Обнаружен	выкл
	22	1.05	DF Состояние получаемого сигнала	Потеря пакета	ВКЛ
Состояние	22	LOF		Нормальное	ВЫКЛ
ЛИНИИ	40	SYNC	Зарезервирован	Не имеет значени	Я
	41	LAPD	ISDN PRI: установка связи	Установлена связь или PRI	ВКЛ
	7.	LAID	или, установка DTC (E1/T1,CASI)	Не установлена связь или DTC	ВЫКЛ
	42	LLP	Тест разработчика	Проверка	ВКЛ
	42	LLF	тест разраоотчика	Нормальное	ВЫКЛ
	42	DI D	Toor poopoforway	Проверка	ВКЛ
	43 RLP	KLP	Тест разработчика	Нормальное	выкл

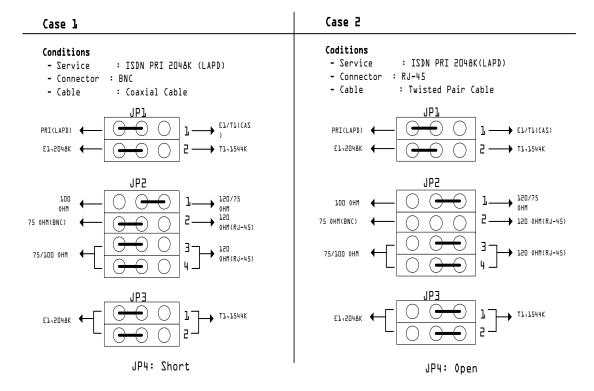
ө Описание переключателей.

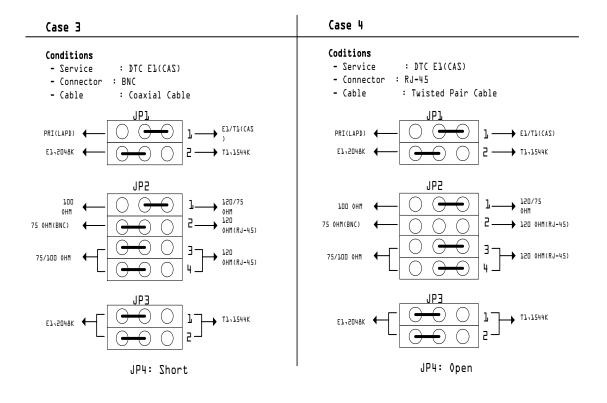
№ переключателя	Использование	Прочее
JP1	Настройка DNIC	Выбор PRI / DTC
JP2	Входное сопротивление	Выбор RJ-45 / BNC
JP3	Выходное сопротивление	Выбор Е1 / Т1
JP4	Выбор типа кабеля BNC	Выбор типа кабеля

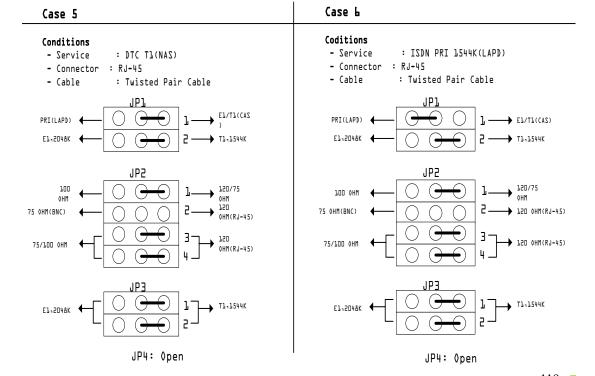
 θ Выбор осуществляется с помощью установки перемычки в положение, указанное на плате.

Учрежденческо-производственная АТС

STAREX-CS


θ Использование переключателей (перемычек).


JP No.	Описание функции
JP1-1	Режим PRI (LAPD): плата DNIC используется как ISDN PRI (2048K/1544K)
	Режим E1/T1 (CAS): плата DNIC используется как DTC (E1/T1).
JP1-2	2048K, E1: скорость 2048K, плата DNIC используется как IDSN PRI или E1/T1.
	1544K, T1: скорость 1544K, плата DNIC используется как IDSN PRI или E1/T1.

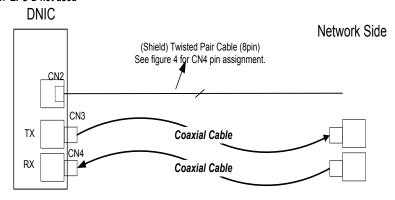

- ө Установка входного сопротивления терминала с помощью перемычек.
 - JP2-1, JP2-2, JP2-3, JP2-4: Установите нужное сопротивление либо 75 Ω , либо 120 Ω , либо 100 Ω , в соответствии с интерфейсом и разъемом. (См. Пример установки перемычек.)
- в Установка выходного сопротивления терминала с помощью перемычек.

JP No.	Описание функции
JP3-1	Режим 2048K, E1: плата DNIC используется как DTC E1 или ISDN PRI (2048K)
JP3-2	Режим 1544K, T1: плата DNIC используется как DTC T1 или ISDN PRI (1544K)
JP4	Замкнут при использовании BNC (коаксиальный кабель)
JF4	Разомкнут для всех остальных случаев

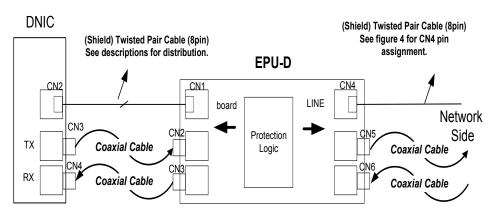
ө Пример установки перемычек.

Учрежденческо-производственная АТС

STAREX-CS

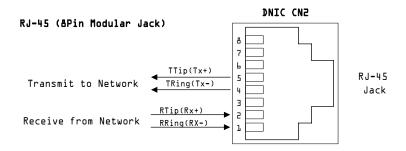

ө Подключение кабеля.

Тип разъема		Описание функции
75Ω	Кабель	: Коаксиальный кабель
(Несбалансированный)	Разъем	: BNC
120Ω	Кабель	: Экранированная витая пара с вилкой RJ-45, категория 5.
(Сбалансированный)	Разъем	: RJ-45


θ Подключение.

На последующих рисунках показано прямое подключение линии и подключение линии с помощью EPU-D (платы защиты), соответственно.

Case 1. EPU-D not used


Case 2. EPU-D used

Конфигурация подключения кабеля для разъемов BNC и RJ-45.

При соединении разъема 2 платы DNIC и разъема 1 платы EPU-D с помощью экранированного кабеля типа «витая пара», соединение осуществляется в соответствии со следующей таблицей (контакты №1 и 2 составляют одну пару, а контакты №4 и 5 – вторую).

№ контакта (DNIC CN2)	Сигнал	№ контакта (EPU-D CN1)
1	RX+	1
2	RX-	2
3	X	3
4	TX+	4
5	TX-	5
6	X	6
7	X	7
8	X	8

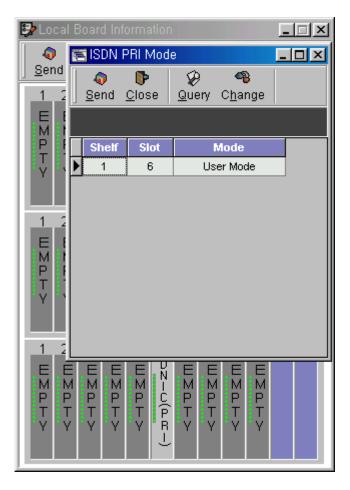
Примечание – Не подключайте линию связи к CN5 DNIC (порт для тестирования).

- ө Конфигурирование платы.
 - 1. Установка платы

Плата DNIC может быть установлена в любую LB, однако, не рекомендуется устанавливать ее в LB2. Если все же плата DNIC установлена в LB2, то никакая другая плата не может быть установлена в LB1 (и наоборот).

- 2. Генерация данных с помощью программы CS-OMS.
 - 1) Запустите программу CS-OMS.
 - 2) Выберите пункт [Data Management].
 - 3) Выберите пункт [2 System Data].
 - 4) Выберите пункт [2.2 System Local Board Information].
 - 5) Поместите мышку на нужном слоте и кликните правой кнопкой.
 - 6) Выберите пункт [DNIC] в меню [Board Exchange] или [Board Type view].
 - 7) Выберите пункт [Send] на информационном экране "Local Board Information".
 - 8) Кликните правой кнопкой на выбранной плате и выберите пункт [Board Data Generation].
 - 9) Введите нужные данные или исправьте существующие и выберите пункт [Verify].
- 10) Выберите пункт [Send] для передачи данный в систему.
- 11) Выберите пункт [Query] для подтверждения нормальной передачи данных.

Учрежденческо-производственная АТС


STAREX-CS

θ Установка режима работы в сети.

Существуют два режима работы платы DNIC в режиме PRI. По умолчанию устанавливается режим пользователя, однако можно сконфигурировать плату в режим сети для проверки ее работоспособности с использованием локальной петли или, при соответствующих условиях, для подключения к подсети. Для того чтобы проделать операцию переключения платы из одного режима функционирования в другой, пользуйтесь приведенной ниже процедурой.

<u>ШАГ 1</u>: DNIC в режиме PRI может использоваться в режиме пользователя или сети, в зависимости от подключения. Для выбора того или иного варианта, выберите на экране пункт [ISDN PRI Mode View].

Если выбрать пункт 'Query', на экране будут отображены текущие установки. Для их изменения, поменяйте данные на экране 'Mode', затем кликните кнопки 'Change' и 'Send' для подтверждения новых установок. Для проверки кликните кнопку 'Query'.

4.16 Плата RMFC.

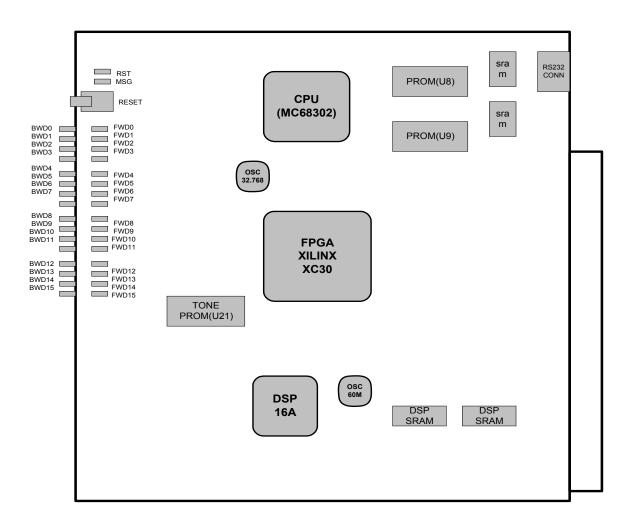
ө Общие сведения.

Плата RMFC (R2 Многочастотный контроллер) обслуживает прием различных используемых в системе тональных сигналов, таких как R2MFC (многочастотный R2), DTMF (двухтональный многочастотный) и MFR Shuttle (многочастотный импульсный челнок), и поддерживает до 16 каналов.

Плата RMFC вырабатывает многочастотный сигнал с помощью установленных на нее ППЗУ (PROM), осуществляет, с помощью системы DSP, последовательный анализ тонального сигнала RMFC с 16 каналов со скоростью 2 Мб/с, выдает информацию о результатах анализа в основную управляющую плату системы (CPM) через системную шину и получает управляющие сигналы от CPM.

ө Основные функции.

R2MFC (многочастотный R2 сигнал) передача/прием – 16 каналов.


DTMF (двухтональный многочастотный сигнал) передача/прием – 16 каналов.

MFR Shuttle (многочастотный импульсный челночный сигнал) передача/прием – 16 каналов.

Прием/передача специального тонового сигнала – 16 каналов.

Примечание: R2MFC/DTMF/MFR Shuttle – Должны быть установлены микросхемы тонового PROM и PROM DSP.

θ Топология платы.

θ Описание функций светодиодов.

Функция	Наименование		Описание	Рабочее состояние	
Состояние	33	ACT	Состояние платы	Нормальное	Мигает
платы	34	MSG	Состояние шины данных	Прием/передача	Мигает
Канал R2	1~16 справа	FWD1 ~ FWD16	Исходящий на канал сигнал	Используется	ВКЛ
	17~32 слева	BWD1 ~ BWD16	Входящий с канала сигнал	Используется	ВКЛ

Примечание: С помощью OMS можно выбрать закон квантования а-или µ. (В основном используется закон а.)

- Описание переключателей.SW2: Сброс платы RMFC.
- Подключение кабеля.Не требуется (нет данных).
- ө Конфигурирование платы.
 - 1. Установка платы.

Плата RMFC может быть установлена в любую LB, однако, не рекомендуется устанавливать ее в LB2. Если плата RMFC все же установлена в LB2, то никакая другая плата не может быть установлена в LB1 (и наоборот).

- 2. Генерация данных с помощью программы CS-OMS.
 - 1) Запустите программу CS-OMS.
 - 2) Выберите пункт [Data Management].
 - 3) Выберите пункт [2 System Data].
 - 4) Выберите пункт [2.2 System Local Board Information].
 - 5) Поместите мышку на нужном слоте и кликните правой кнопкой.
 - 6) Выберите пункт [RMFC] в меню [Board Exchange] или [Board Type view].
 - 7) Выберите пункт [Send] на информационном экране "Local Board Information".

Примечание: Плата RMFC является платой ресурсов и выполнение каких-либо других настроечных процедур не требуется.

4.17 Плата VPM.

θ Общие сведения.

Плата VPM (плата голосовых сообщений) является сервисной платой для системы голосовых сообщений и осуществляет обработку голосовых (речевых) данных с помощью технологии обработки речевого сигнала. Плата VPM, дополненная платами VPEU, является встроенным оборудованием системы STATEX-CS. Одна плата обрабатывает сигналы максимум 8 каналов. В частности, с помощью этой платы осуществляется кодирование и декодирование голосовых данных PCM в формат G.729A с использованием DSP. Кроме того, плата детектирует DTMF.

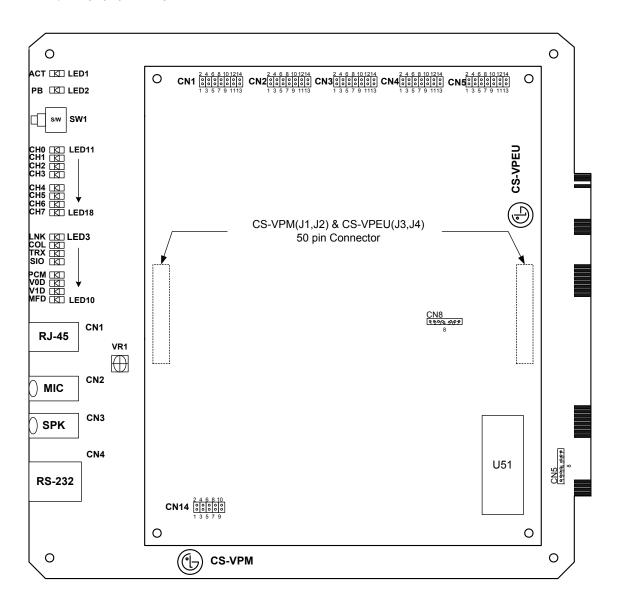
Примечание: как сама плата VPM, так и плата расширения VPMU обычно обозначаются одинаково как VPM.

θ Основные функции.

 Интерфейс LAN
 : 1 порт 10Base-T Ethernet (RJ-45);

 Интерфейс SIO
 : 1 порт RS-232C (9-контактный);

Кодирование голосовых данных : G.729A;


Получение DTMF и определение

его тона : DSP; Обработка голосовых данных : 8 портов; Время записи : 4 часа;

Функциональные возможности:

- Система голосовой почты.
- Функция автоматизированного оператора.
- Система голосовых бюллетеней.
- Оповещения, звуковое сопровождение при ожидании ответа.

ө Топология платы.

Учрежденческо-производственная *ATC*

STAREX-CS

θ Описание функций светодиодов.

Функция	Nº	Наимен.	Описание	Рабочее состо	ояние
Состояние	1	ACT	Состояние платы	Нормальное	Мигает
платы	2	РВ	Состояние шины данных	Прием/передача	Мигает
Состояние звукового канала	11~18	CH0 ~ CH7	Индикация мониторинга состояния 8 каналов	Используется	вкл
Отображение	3	LNK	Индикация соединения по протоколу Ethernet	Используется	ВКЛ
состояния системы	4	COL	Сбой данных порта LAN	Присутствует	ВКЛ
ввода/вывода	5	TRX	Прием/передача порта LAN	Используется	Мигает
(I/O)	6	SIO	Прием/передача порта SIO	Используется	Мигает
Скорость РСМ	7	PCM	Индикация приема/передачи голосовых данных РСМ с высокой скоростью	Используется	ВКЛ
	8	V0D	Состояние вокодера 0 DSP	Нормальное	Мигает
Состояние DSP	9	V1D	Состояние вокодера 1 DSP	Нормальное	Мигает
DOI	10	MFD	Индикация приема DTMF сигнала	Прием	Мигает

θ Описание переключателей:

SW1: Сброс платы МОГ.

 θ Подключение кабелей: Не требуется.

θ CN1~ CN5: Тестовые разъемы для разработчиков.

- Конфигурирование платы.
 - 1. Установка платы.

Плата VPM может быть установлена в любую LB, однако, не рекомендуется устанавливать ее в LB2.

Если плата VPM все же установлена в LB2, то никакая другая плата не может быть установлена в LB1 (и наоборот).

- 2. Выработка данных с помощью программы CS-OMS.
 - 1) Запустите программу CS-OMS.
 - 2) Выберите пункт [Data Management].
 - 3) Выберите пункт [2 System Data].
 - 4) Выберите пункт [2.2 System Local Board Information].
 - 5) Поместите мышку на нужном слоте и кликните правой кнопкой.
 - 6) Выберите пункт [VPM] в меню [Board Exchange] или [Board Type view].
 - 7) Выберите пункт [Send] на информационном экране "Local Board Information".
 - 8) Кликните правой кнопкой на выбранной плате и выберите пункт [Board Data Generation].
 - 9) Введите нужные данные или исправьте существующие и выберите пункт [Verify].
- 10) Выберите пункт [Send] для передачи данный в систему.
- 11) Выберите пункт [Query] для подтверждения нормальной передачи данных.

4.18 Плата APM.

θ Общие сведения.

Плата АРМ (модуль обработки приложений) является связующей платой и выполняет программы компьютерной телефонии (СТІ) и автоматическое распределение звонков (АСD). В ней используется ППЗУ (ЕРRМ) и динамическое ОЗУ (DRAM) объемом 16Мбайт для обеспечения дополнительных функций. Для выполнения дополнительных функций на плату АРМ может быть установлен жесткий диск с интерфейсом IDE и микросхема флэш-памяти объемом 8Мбайт. Плата АРМ имеет 1 интерфейс LAN и 4 порта для взаимодействия с другим оборудованием. Кроме этого, на плате установлена микросхема выработки тактовой частоты (DS1687) для хронологируемой обработки данных, связанных с дополнительными функциями.

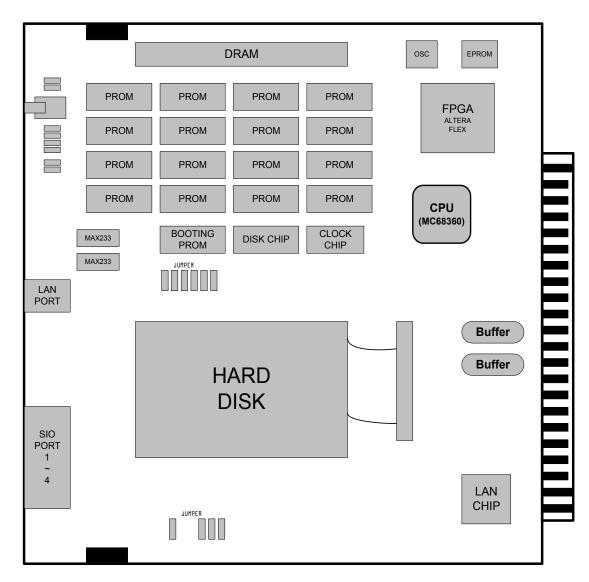
ТАРІ : Интерфейс обработки приложений (АРІ) телефонии.

CSTA : Телекоммуникационное приложение, обрабатываемое компьютером.

ө Основные функции.

Функции СТІ и ACD.

Диск : Жесткий диск (HDD) (Гбайт) или диск ZIP (Гбайт),


устанавливаются дополнительно.

 Интерфейс LAN 1 порт
 : RJ-45.

 Интерфейс SIO
 : 4 порта.

Системный таймер : DS1687 – NVRAM с календарем.

в Топология платы.

Примечание: **DRAM** – динамическое ОЗУ; **EPROM** – ПППЗУ; **PROM** – ППЗУ; **FPGA** – графический адаптер; **CPU** – ЦП; **BOOTING PROM** – загрузочное ППЗУ; **DISK CHIP** – микросхема управления диском; **CLOCK CHIP** – микросхема управления тактовой частотой; **LAN PORT** – порт ЛВС; **SIO PORT** – порт системы ввода/вывода; **BUFFER** – буфер; **HARD DISK** – жесткий диск; **LAN CHIP** – микросхема управления LAN.

ө Описание функций светодиодов.

Функция	Наимен.	Описание	Рабочее состояние	
Состояние платы	ACT	Состояние платы	Нормальное	Мигает
	РВ	Состояние шины данных	Прием/передача	ВКЛ/ВЫКЛ
	SIO CH1	Прием/передача данных	Прием/передача	ВКЛ/ВЫКЛ
	SIO CH2	Прием/передача данных	Прием/передача	ВКЛ/ВЫКЛ
	SIO CH3	Прием/передача данных	Прием/передача	ВКЛ/ВЫКЛ
	SIO CH4	Прием/передача данных	Прием/передача	ВКЛ/ВЫКЛ
	LAN	Установка связи, прием/передача данных	Прием/передача	ВКЛ/ВЫКЛ
Диск	Диск	Состояние диска	Активное	ВКЛ

θ Описание переключателей.

№ переключателя	Описание
JP 1~5	Выбор EPROM/Flash EPROM
JP 6	Выбор LOOPBACK/NORMAL
JP 9	Выбор HDD/ZIP
JP 10	Выбор DISK ON/OFF
JP 11	Выбор ON_LINE/OFF_LINE
JP 12	Выбор DISKON CHIP/FLASH

ө Подключение кабеля.

№ разъема	Тип разъема	Использование	Примечание
CN7	RJ-45	Подключение внешнего оборудования	10Base-T Ethernet
CN2	RS-232C (3 контакта)	SIO CH1	Подключение: передача – 1 , прием - 2, земля – 9 контакты
	RS-232C (3 контакта)	SIO CH2	Подключение: передача – 3, прием – 4, земля – 9 контакты
	RS-232C (3 контакта)	SIO CH3	Подключение: передача – 5, прием – 6, земля – 9 контакты
	RS-232C (3 контакта)	SIO CH4	Подключение: передача – 7, прием - 8, земля – 9 контакты

- ө Конфигурирование платы.
 - 1. Установка платы.

Плата APM может быть установлена в любую LB.

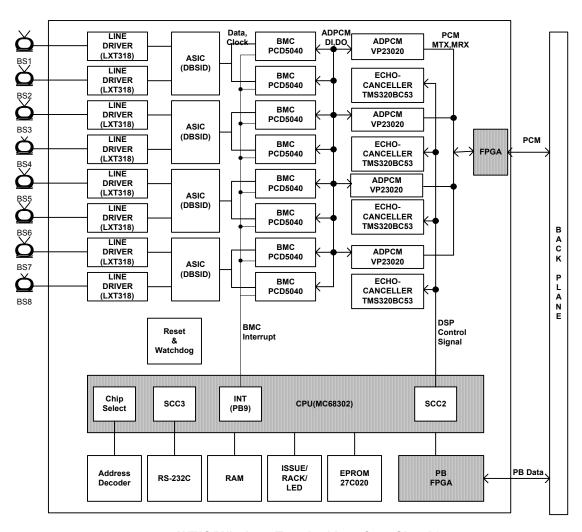
- 2. Генерация данных с помощью программы CS-OMS.
 - 1) Запустите программу CS-OMS.
 - 2) Выберите пункт [Data Management].
 - 3) Выберите пункт [2 System Data].
 - 4) Выберите пункт [2.2 System Local Board Information].
 - 5) Поместите мышку на нужном слоте и кликните правой кнопкой.
 - 6) Выберите пункт [APM] в меню [Board Exchange] или [Board Type view].
 - 7) Выберите пункт [Send] на информационном экране "Local Board Information".

4.19 Плата WTIC.

в Общие сведения.

Плата WTIC (плата микросотовой связи стандарта DECT) может быть установлена в любое платоместо системы STAREX-CS. Плата WTIC является одной из периферийных плат системы STAREX-CS. В данном разделе описывается интерфейс WTIC для телефонов стандарта DECT. Целью данного раздела является описание взаимодействия аппаратного обеспечения и его чтобы можно было написать использование, для того, правильное соответствующую программу управления этим интерфейсом. Характеристики, зависящие от оборудования, будут детально проанализированы для их правильного использования, в то время как независимым от оборудования характеристикам будет уделено не такое пристальное внимание, для того, чтобы программное обеспечение могло бы быть написано без лишних ограничений. Каждая плата WTIC состоит из 1 CPU (68302), 2 FPGA (IspLSI2064), 4 ADPCM (VP23020), 8 BMC (PCD5043), 4 ASIC и нескольких микросхем логики. Каждая плата WTIC поддерживает 8 BS (базовых станций). Для работы с ячейкам (сотами) используется дистанционное управление на основе радиочастотного (RF) обмена данными.

ө Установка.


- 1. Платы WTIC следует устанавливать по одной на каждую систему.
- 2. Платы WTIC оснащены собственным машинонезависимым кодом доступа (PARK Code), который записан в PCB WTIC.
- 3. К плате WTIC можно подключить до 8 BS.
- 4. Одна BS может одновременно поддерживать до 5 звонков. Однако, несмотря на то, что теоретически одновременно могут поддерживаться до 40 звонков, одна плата WTIC может поддерживать максимум 32 звонка, поскольку на ней имеется только 32 временных интервала.
 - (8 BS X 5 звонков=40 звонков; в действительности 32 звонка.)
- 5. В системе может быть зарегистрировано до 96 телефонов DECT, однако максимальная пропускная способность составляет 32 звонка по тем же причинам, которые были приведены выше.
- 6. Машинонезависимый код доступа (PARK Code) регистрируется с помощью OMS.

7. Коды идентификации телефонов DECT должны быть зарегистрированы в OMS.

- 8. Регистрация телефонов DECT производится в OMS поочередно в пункте [9.3 DECT Information].
- 9. После ввода информации о телефонах DECT в систему OMS [9.3 DECT Information] и нажатия мышкой на кнопку SEND в OMS, система ожидает подтверждения регистрации от телефонов DECT.
 - Как зарегистрироваться в системе с помощью телефона DECT. Нажмите клавишу Function + 0 + введите код доступа или нажмите
 - () + AC (Идентификационный код) +() + введите FTID (по умолчанию: 1) + клавиша Function + клавиша Function.
- 10. Отмена собственной регистрации телефона DECT с помощью телефона DECT.
 - Нажмите клавишу Function + 9 + PIN код (0000) + клавиша Function + клавиша Function.

в Блок-схема платы WTIC.

θ

WTIC(Wireless Terminal Interface Circuit)

Описание функций светодиодов.

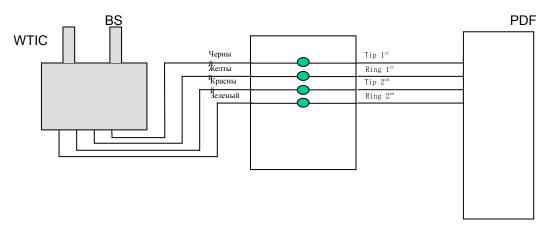
Функция	Nº	Наимен.	Описание	Состояние
Управление платой	1	ACT	Активное	Мигает
	2	PB	Передача/прием сообщений	Мигает
	7	ECH	В случае установки функции Echo	Мигает
	8	INT	Прерывание	ВКЛ
	9	SIO	Прием/передача	Мигает
	10	RST	Перезагрузка	ВКЛ
Состояние BS	3	BS 1, 2	Используется BS1 или BS2	Мигает
	4	BS 3, 4	Используется BS3 или BS4	Мигает
	5	BS 5, 6	Используется BS5 или BS6	Мигает
	6	BS 7, 8	Используется BS7 или BS8	Мигает

ө Подключение кабелей.

Примечание: См. Руководство пользователя беспроводным телефоном DECT.

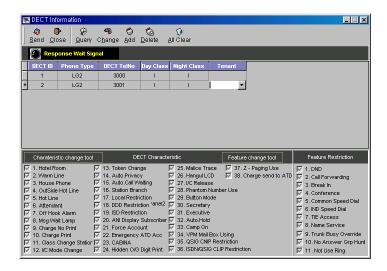
θ Конфигурирование платы.

В данном разделе описывается процедура конфигурирования платы, требуемая для функционирования платы WTIC после ее установки в систему STAREX-CS.


9 Установка платы.

Плата WTIC может быть установлена в любое платоместо системы STAREX-CS, за исключением LB2. Если в системе не существует никаких данных и плата WTIC устанавливается первоначально, то будут сгенерированы данные по умолчанию для обеспечения основных функций вызова. Далее в этом разделе будет описана процедура генерирования данных после установки платы WTIC в уже сконфигурированную систему, в которой до этого не были установлены платы WTIC.

Учрежденческо-производственная АТС


STAREX-CS

ө Подключение платы WTIC и BS (базовой станции).

- ө Генерация данных с помощью программы CS-OMS.
 - 1) Запустите программу CS-OMS.
 - 2) Выберите пункт [Data Management].
 - 3) Выберите пункт [2 System Data].
 - 4) Выберите пункт [2.2 System Local Board Information].
 - 5) Поместите мышку на нужном слоте и кликните правой кнопкой.
 - 6) Выберите пункт [WTIC] в меню [Board Exchange] или [Board Type view].
 - 7) Выберите пункт [Send] на информационном экране "Local Board Information".
 - 8) Кликните правой кнопкой на выбранной плате и выберите пункт [Board Data Generation].
 - 9) Введите нужные данные или исправьте существующие и выберите пункт [Verify].
 - 10) Выберите пункт [Send] для передачи данный в систему.
 - 11) Выберите пункт [Query] для подтверждения нормальной передачи данных.
- θ Регистрация первоначальных данных о плате.
 - <u>ШАГ 1:</u> В случае успешного завершения перечисленных процедур, плата WTIC будет инициализирована. После этого следует выполнить более сложную процедуру для регистрации телефонов DECT в плате WTIC. Ознакомьтесь с условиями, описанными в разделе 4 'Условия'.
 - Для первого использования платы WTIC нет необходимости удалять какие-либо данные, поскольку они отсутствуют. Однако на всякий случай, лучше удалить все данные о плате и телефонах, а затем загрузить новые данные.

Кликните кнопку 'Delete' в основном меню экрана [9.3 DECT Information] для удаления всех данных, а затем кликните кнопку 'Yes'.

Выполнив указанную процедуру, вы удалите все данные о плате и телефонах. После этого следует ввести данные о плате.

<u>ШАГ 2:</u> Данные о плате включают ее PARK Кеу (ключ машинонезависимого права доступа) и AC Code (код авторизации).

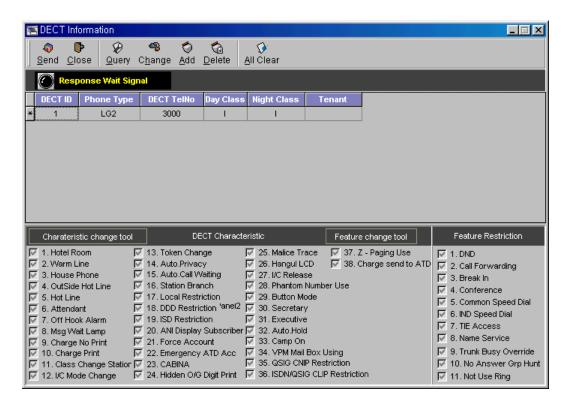
Во-первых, для регистрации ключа права доступа, откройте в меню пункт № 9.1 'Park Code', затем выберите пункт 'New PARK Code' в меню 'Registration Type'. Введите '10017080' (запомните или запишите) в меню 'PARK Key'. Затем кликните на кнопку 'Transmission' и ключ будет зарегистрирован, как показано на рисунке. Для проверки регистрации, кликните 'type' в меню 'Query Condition'.

Примечание 1: Цифры '10017080' приведены только в качестве примера ключа. В разделе 4. «Условия» описано значение ключа.

Примечание 2: Значение PARK Key назначается производителю от ETSI. Для компании LG Electronics назначено значение '10017'. Следовательно, PARK Key, регистрируемый для любой платы должен

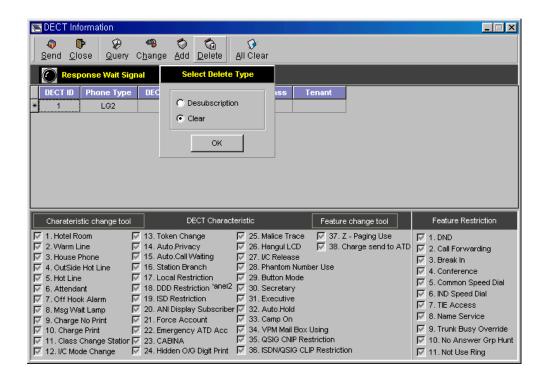
использовать код, назначенный соответствующему производителю.

<u>ШАГ 3</u>: Для того чтобы зарегистрировать идентификационный код (AC Code), откройте пункт меню № 9.2 'Authentication Code' и зарегистрируйте код точно так же, как было описано в ШАГЕ 2. Результат показан на рисунке. После выполнения этих процедур, параметры платы загружены, и можно приступать к процедуре регистрации телефонов DECT.


Примечание - Цифры '1234' используются только как пример AC Code.

Регистрация телефона DECT.

<u>ШАГ 1:</u> Процедура первоначальной регистрации телефона и процедура регистрации нового телефона не отличаются друг от друга. Откройте пункт меню [9.3 DECT Information] и в под-меню введите данные телефона, как показано на рисунке ниже. Ознакомьтесь с разделом 4 'Условия', где приводится спецификация телефона.


После того, как данные телефона введены, кликните последовательно на кнопки 'Add' и 'Send'. Обратите внимание, что для успешной регистрации телефона DECT, данная процедура должна выполняться только после процедуры, описанной выше.

После передачи этих данных при помощи радиосигнала, телефон DECT будет зарегистрирован в системе, если только в процессе передачи не возникнет никаких ошибок. По окончании регистрации окошко 'Please Wait' погаснет, и на экране появятся данные телефона. Для их проверки кликните на кнопку 'Query'.

<u>ШАГ 2</u>: Для того чтобы добавить новый телефон, нужно сгенерировать линию нового телефона и выполнить процедуры, описанные в ШАГЕ 1.

- 9 Удаление телефона DECT.
 - Для удаления регистрационных данных телефона DECT из системы предусмотрены две процедуры. Первая процедура предусматривает отдельное удаление данных из телефона и из платы WTIC (desubscription), а вторая предусматривает одновременное удаление данных по команде платы WTIC (clear).
 - Desubscription: При этой процедуре плата передает телефону команду на отключение. Телефон принимает эту команду и удаляет свои данные из системы. Данные о телефоне удалены из системы и из платы.
 - Clear: При этой процедуре удаляются данные о телефоне, записанные в системе и на плате, причем команда на удаление данных телефону не передается. Соответственно, в таких условиях осуществить звонок невозможно, и владелец телефона должен удалить свои регистрационные данные с помощью встроенных функций телефона.



Кликните на кнопку 'Delete' в основном меню, показанном на рисунке, после чего на экране появится меню выбора процедуры. Выберите нужную процедуру и кликните кнопку 'Send', в результате чего данные о телефоне будут удалены. В приведенном примере выбрана процедура «Clear».

4.20 Устройство EPU.

 θ Общие сведения о EPU.

EPU (внешний защитный модуль) располагается между системой и кроссшкафом (MDF) для защиты системы и ее плат от опасного тока или напряжения, подаваемого по кабелю, подключенному к системе.

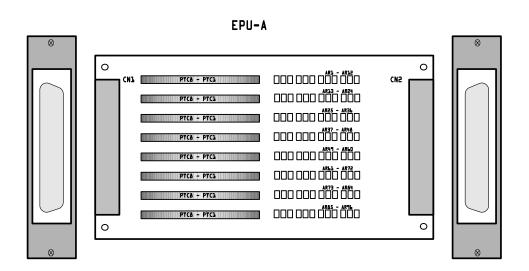
ө Общие сведения о EPU-A.

EPU-A (аналоговый внешний защитный модуль для аналогового порта) используется для защиты системы и ее плат от опасного тока или напряжения, подающегося на систему STAREX-CS извне, и подключается между аналоговыми платами (ASLC, APTC, ALTC, ASLC-MW) и MDF.

θ Основные функции.

Параметр	Содержание	Значение / Поставщик					
	Компонент защиты по току	JH11330L (Поставщик: Jahwa Electronics)					
	Рабочий ток	80 мА					
	Ток отключения	160 мА					
	Сопротивление пост. току	30 Ω					
Спецификация	Компонент защиты по напряжению	TBV230-050					
спецификация аппаратного обеспечения	Ток с непоследовательными пиковыми импульсами	10 X 1000 мс макс. 50 A 10 X 560 мс макс. 70 A 10 X 160 мс макс 100 A 8 X 20 мс макс 150 A					
	Максимально допустимый ток	Макс. 22 А. (60 Гц, один цикл)					
	Рабочая температура	-40°C ~ 125°C					
	Напряжение отключения	195 ~ 265 V					
	Ток отключения	Мин. 230 мА					

ө Условия тестирования:


● Tip – Ring : 10/560 мкс, 800 B, 100 A.

Tip – FGND, Ring – FGND
 Допустимое число пробоев
 10/160 мкс, 1500 В, 200А.
 10 раз каждые 30 секунд

(Альтернативный

режим).

ө Топология платы.

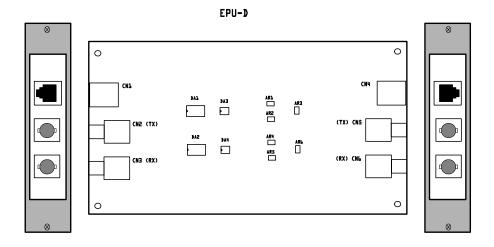
- Общие сведения о EPU-D.

 EPU-D (внешний защитный модуль платы DNIC) используется для защиты платы DNIC и системы от перегрузок по току и напряжению, подающемуся в систему STAREX-CS извне, и подключается между платой DNIC и MDF. EPU-D устанавливается в модуль EPU.
- θ Основные функции.
- θ Элементы конфигурации цепи защиты от перегрузок по току.

Параметр	Содержание	Значение				
OFFICE OF THE STATE OF THE STAT	RXE075 (компания Raychem)	I _H : 0.75 A I _T : 1.50 A				
Элементы линии защиты от перегрузок по току	Начальное сопротивление	Макс. 0.4Ω, Мин. 0.25Ω * I _H (Рабочий ток: Макс. ток, при котором прибор не отключается при температуре 20°C) * I _T (Ток отключения: Мин. ток, при котором прибор всегда отключается при температуре 20°C)				
		Пиковая мощность (Тр = 10/1000 мкс): 1500 Ватт				
	LC01-6 (компания SEMTECH) Разрешенное число пробоев	Пиковый ток (Тр = 10/160 мкс): 200 А				
Элементы линии		Обратное напряжение пробоя (V _{BR}): Мин. 8.0 В (I _т =1 мА)				
защиты от перегрузок по		Фиксированное напряжение (Vc): Max. 16 В (Ipp = 200A, T_P = 10/160 мкс)				
напряжению		10 раз каждые 30 секунд (Альтернативный режим)				
	DSS201M (компания	Рабочее напряжение: 200 B (160 B ~ 240 B)				
	MITSUBISHI)	Сила пикового тока: 500 А				

ө Условия тестирования:

Tip – Ring
 Tip – FGND, Ring – FGND
 Допустимое число пробоев
 10/560 мкс, 800 B, 100 A.
 10/160 мкс, 1500 B, 200 A.
 10 раз каждые 30 секунд


(Альтернативный

режим).

Учрежденческо-производственная АТС

STAREX-CS

ө Топология платы модуля EPU-D.

ө Общие сведения о EPU-I.

EPU-I (внешний защитный модуль ISDN BRI) используется для защиты платы BRIC и системы от перегрузок по току и напряжению, подающемуся в систему STAREX-CS извне, и подключается между платами BRIC (ASLC, APTC, ALTC, ASLC-MW) и MDF. EPU-I устанавливается в модуль EPU.

Основные функции:

Элементы конфигурации цепи защиты.

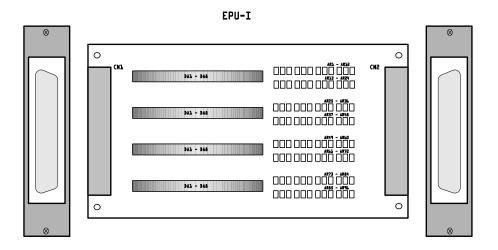
Параметр	Содержание	Значение
Элементы линии	RXE075 (компания Raychem)	I _н : 0.75 A I _т : 1.50 A
защиты от перегрузок по току	Начальное сопротивление	Макс. 0.4Ω, Мин. 0.25Ω * I _н (Рабочий ток: Макс. ток, при котором прибор не отключается при температуре 20°C) * I _T (Ток отключения: Мин. ток, при котором прибор всегда отключается при температуре 20°C)
		Пиковая мощность (Тр = 10/1000 мкс): 1500 Ватт
	LC01-6 (компания SEMTECH) Разрешенное число пробоев	Пиковый ток (Тр = 10/160 мкс): 200 А
Элементы линии		Обратное напряжение пробоя (V_{BR}): Мин. 8.0 В (I_T =1 мА)
защиты от перегрузок по		Фиксированное напряжение (Vc): Max. 16 В (Ipp = 200A, T _P = 10/160 мкс)
напряжению		10 раз каждые 30 секунд (Альтернативный режим)
	DSS201M (компания	Рабочее напряжение: 200 B (160 B ~ 240 B)
	MITSUBISHI)	Сила пикового тока: 500 А

θ Условия тестирования:

• Tip - Ring

• Tip – FGND, Ring – FGND

• Допустимое число пробоев

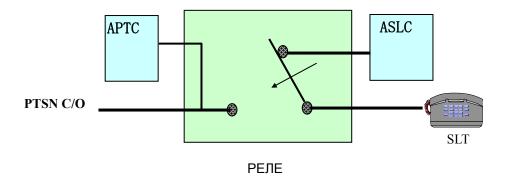

: 10/160 мкс, 1500 B, 200 A. : 10 раз каждые 30 секунд

: 10/560 мкс, 800 B, 100 A.

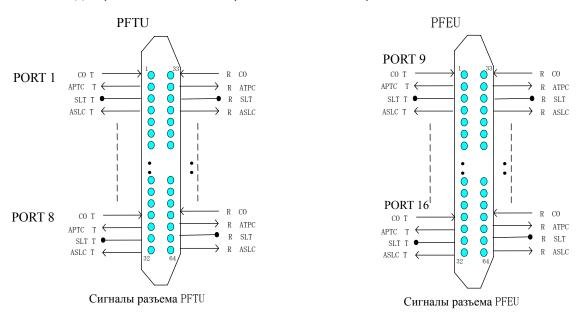
то раз каждые эо секунд (Альтернативный

режим).

ө Топология платы модуля EPU-I.



4.20 Модуль PFTU.


ө Общие сведения.

PFTU (модуль переключения SLT при аварии) в базовой конфигурации поддерживает 8 портов, но может быть расширен до 16 портов за счет использования платы расширения (PFEU). Максимальное количество портов, задействованных в системе, может быть увеличено пропорционально количеству установленных модулей PFTU. При отсутствии подачи электропитания к системе или неисправности блока управления, PFTU вырабатывает сигнал /MAJALARM (глобальная неисправность) и активизирует реле для соединения напрямую линий PTSN и SLT. При возвращении системы в нормальное состояние, SLT подключаются обратно к платам ASLC и используются в обычном режиме однолинейных телефонов.

ө Конфигурация.

ө Диаграмма подключения разъема типа «Champ».

PFEU (модуль расширения блока обработки сбоев питания) является аварийной платой, устанавливаемой в плату PFTU и поддерживающий CO линии на 8 портах при аварийном состоянии.

5. Назначение контактов, применяемых в системе.

5.1 Назначение сигналов плоских кабелей (EXPU – EMB).

Nº	FCC1	FCC2	FCC3	FCC4	FCC5
1	RXHW12	Æ10	/CNCL	RXHW25	/E21
2	TXHW12	/E11	8MCK	TXHW25	/E22
3	RXHW13	Æ12	SP8M	RXHW26	/E23
4	TXHW13	Æ13	4MCK	TXHW26	/E24
5	RXHW14	/E14	2MCK	RXHW27	/E25
6	TXHW14	Æ15	E8K	TXHW27	/E26
7	RXHW15	Æ16	EX3MCK (Rev)	RXHW30	/E27
8	TXHW15	/E17	/FH	TXHW30	/E28
9	RXHW16	Æ18	HDLCRX	RXHW31	/E29
10	TXHW16	Æ19	HDLCTX	TXHW31	/E30
11	RXHW17	/E20	HDLC2	RXHW32	/E31
12	TXHW17	E1RING0_INJ	HDLCCLK	TXHW32	E2RINGO_INJ
13	RXHW20	E1RING1_INJ	/TSB0	RXHW33	E2RING1_INJ
14	TXHW20	E1RG0_FAIL	PB0	TXHW33	E2RG0_FAIL
15	RXHW21	E1RG1_FAIL	PB1	RXHW34	E2RG1_FAIL
16	TXHW21	E1DC0_INJ	PB2	TXHW34	E2DC0_INJ
17	RXHW22	E1DC1_INJ	PB3	RXHW35	E2DC1_INJ
18	TXHW22	E1PWR_ID	BP4	TXHW35	E2PWR_ID
19	RXHW23	E1AC_FAIL	PB5	RXHW36	E2AC_FAIL
20	TXHW23	E154V0_FAIL	PB6	TXHW36	E254V0_FAIL
21	RXHW24	E154V1_FAIL	PB7	RXHW37	E254V1_FAIL
22	TXHW24	E15V0_FAIL	PB8	TXHW37	E25V0_FAIL
23	/E1PBS4(Open)	E15V1_FAIL	CLK3M	/E2PBS4(GND)	E25V1_FAIL
24	/E1PBS5(GND)	/TREC1		/E2PBS5(Open)	/TREC2
25	/FCC1_INJ	/FCC2_INJ	/FCC3_INJ	/FCC4_INJ	/FCC5_INJ

Таблица – Назначение сигналов плоского соединительного кабеля (FCC).

θ Места установки FCC.

№ FCC		Откуда	Куда	Тип кабеля
FCC1	EXPU	FCC1	EMB1 FCC1	50P Flat Cable
FCC2	EXPU	FCC2	EMB1 FCC2	50P Flat Cable
FCC3	EXPU	FCC3	EMB1FCC3 – EMB2 FCC3	50P Flat Cable
FCC4	EXPU	FCC4	EMB2 FCC1	50P Flat Cable
FCC5	EXPU	FCC5	EMB2 FCC2	50P Flat Cable

5.2 MMB: Таблица сигналов разъема CPM0-U.

UA	Наимен.	Примечание	UB	Наимен.	Примечание	UC	Наимен.	Примечание
UA	сигнала	(Сигнал к)	UB	сигнала	(Сигнал от)	UC	сигнала	(Сигнал от)
1	GND		1	GND		1	GND	
2	GND		2	GND		2	GND	
3			3			3		
4	+5V		4	+5V		4	+5V	
5	+5V		5	+5V		5	+5V	
6			6			6	BSA0	CPM1 UC6
7	2MCK	CPM1 UA7 All LBs A3	7	HDLCRX	CPM1 UB8, All LBs A11	7	BSA1	CPM1 UC7
8	4MCK	CPM1 UA8 All LBs A4	8	HDLCTX	CPM1 UB7, All LBs A10	8	/CNCL	CPM1 UC8, All LBs B3
9	/TREC0	CPM1 UA9 All LBs A8	9	HDLC2	CPM1 UB9, All LBs A12	9	/FH	CPM1 UC9, All LBs B12
10	/TSB0	CPM1 UA10 All LBs A13	10	RXHW12	CPM1 UB10 EXPU FCC1 B1 (EMB1 LB1 / LB2-B16)	10	TXHW01	CPM1 UC10 MMB LB1-A16, LB2-A16
11	RXHW01	CPM1 UA11 MMB LB1-B16, LB2-B16	11	TXHW12	CPM1 UB11 EXPU FCC1 B2 (EMB1 LB1 / LB2-A16)	11	TXHW02	CPM1 UC11 MMB LB3-A16
12	RXHW02	CPM1 UA12 MMB LB3-B16	12	RXHW13	CPM1 UB12 EXPU FCC1 B3 (EMB1 LB3-B16)	12	TXHW03	CPM1 UC12 MMB LB4-A16
13	RXHW03	CPM1 UA13 MMB LB4-B16	13	TXHW13	CPM1 UB13 EXPU FCC1 B4 (EMB1 LB3-A16)	13	TXHW04	CPM1 UC13 MMB LB5-A16
14	RXHW04	CPM1 UA14 MMB LB5-B16	14	RXHW14	CPM1 UB14 EXPU FCC1 B5 (EMB1 LB4-B16)	14	TXHW05	CPM1 UC14 MMB LB6-A16
15	RXHW05	CPM1 UA15 MMB LB6-B16	15	TXHW14	CPM1 UB15 EXPU FCC1 B6 (EMB1 LB4-A16)	15	TXHW06	CPM1 UC15 MMB LB7-A16
16	RXHW06	CPM1 UA16 MMB LB7-B16	16	RXHW15	CPM1 UB16 EXPU FCC1 B7 (EMB1 LB5-B16)	16	TXHW07	CPM1 UC16 MMB LB8-A16
17	RXHW07	CPM1 UA17 MMB LB8-B16	17	TXHW15	CPM1 UB17 EXPU FCC1 B8 (EMB1 LB5-A16)	17	TXHW10	CPM1 UC17 MMB LB9-A16
18	RXHW10	CPM1 UA18 MMB LB9-B16	18	RXHW16	CPM1 UB18 EXPU FCC1 B9 (EMB1 LB6-B16)	18	TXHW11	CPM1 UC18 MMB LB10-A16
19	RXHW11	CPM1 UA19 MMB LB10-B16	19	TXHW16	CPM1 UB19 EXPU FCC1 B10 (EMB1 LB6-A16)	19	8MCK	CPM1 UC19 All LBs A20
20	SP8M	CPM1 UA20 All LBs B20	20	RXHW17	CPM1 UB20 EXPU FCC1 B11 (EMB1 LB7-B16)	20	DHLCCLK	CPM1 UC20 All LBs B21
21	SCLK16M	CPM1 UA21 LBs A33 (From DNIC)	21	TXHW17	CPM1 UB21 EXPU FCC1 B12 (EMB1 LB7-A16)	21	PLL16M	CPM0 UC21 From CLKU CN2 Pin8
22	A0	CPM1 UA22 FDKU CN1 Pin12	22	RXHW20	CPM1 UB22 EXPU FCC1 B13 (EMB1 LB8-B16)	22	A1	CPM1 UC22 FDKU CN1 Pin11
23	A2	CPM1 UA23 FDKU CN1 Pin10	23	TXHW20	CPM1 UB23 EXPU FCC1 B14 (EMB1 LB8-A16)	23	A3	CPM1 UC23 FDKU CN1 Pin9

UA	Наимен.	Примечание	UB	Наимен.	Примечание	UC	Наимен.	Примечание
- OA	сигнала	(Сигнал к)		сигнала	(Сигнал от)		сигнала	(Сигнал от)
24	A4	CPM1 UA24 FDKU CN1 Pin8	24	RXHW21	CPM1 UB24 EXPU FCC1 B15 (EMB1 LB9-B16)	24	A5	CPM1 UC24 FDKU CN1 Pin7
25	A6	CPM1 UA25 FDKU CN1 Pin6	25	TXHW21	CPM1 UB25 EXPU FCC1 B16 (EMB1 LB9-A16)	25	A7	CPM1 UC25 FDKU CN1 Pin5
26	A8	CPM1 UA26 FDKU CN1 Pin27	26	RXHW22	CPM1 UB26 EXPU FCC1 B17 (EMB1 LB10-B16)	26	A9	CPM1 UC26 FDKU CN1 Pin26
27	A10	CPM1 UA27 FDKU CN1 Pin25	27	TXHW22	CPM1 UB27 EXPU FCC1 B18 (EMB1 LB10-A16)	27	A11	CPM1 UC27 FDKU CN1 Pin23
28	A12	CPM1 UA28 FDKU CN1 Pin4	28	RXHW23	CPM1 UB28 EXPU FCC1 B19 (EMB1 LB11-B16)	28	BSD0	CPM1 UC28
29	D24	CPM1 UA29 FDKU CN1 Pin13 MMB U1 Pin18 (74HC245) MMB U1 Pin18 (74HC245)	29	TXHW23	CPM1 UB29 EXPU FCC1 B20 (EMB1 LB11-A16)	29	D25	CPM1 UC29 FDKU CN1 Pin14 MMB U1 Pin17 (74HC245) MMB U2 Pin17 (74HC245)
30	D26	CPM1 UA30 FDKU CN1 Pin15 MMB U1 Pin16 (74HC245) MMB U2 Pin16 (74HC245))	30	RXHW24	CPM1 UB30 EXPU FCC1 B21 (EMB1 LB12-B16)	30	D27	CPM1 UC30 FDKU CN1 Pin17 MMB U1 Pin15 (74HC245) MMB U2 Pin15 (74HC245)
31	D28	CPM1 UA31 FDKU CN1 Pin18 MMB U1 Pin14 (74HC245) MMB U2 Pin14 (74HC245)	31	TXHW24	CPM1 UB31 EXPU FCC1 B22 (EMB1 LB12-A16)	31	D29	CPM1 UC31 FDKU CN1 Pin19 MMB U2 Pin13 (74HC245)
32	D30	CPM1 UA32 FDKU CN1 Pin20	32	/TREC1	CPM1 U32 EXPU FCC2 B24	32	D31	CPM1 UC32 FDKU CN1 Pin21

5.3 MMB: Таблица сигналов разъема CPM0-L.

ე.ა	IVIIVID. Ta	олица сигна	ЛОБ	Passe	na Oi Wio-L.			
LA	Наименов. сигнала	Примечание (сигнал к)	LB	Наимен. сигнала	Примечание (сигнал к)	LC	Наимен. сигнала	Примечание (сигнал к)
1	/DISK_RW	CPM1 LA1 FDKU CN1 Pin 31	1	RXHW25	CPM1 LB1 EXPU FCC4 B1 (EMB2 LB1 / LB2- B16)	1	/DISK_OE	CPM1 LC1 FDKU CN1 Pin 24
2	/CS_DISK	CPM1 LA2 FDKU CN1 Pin 22	2	TXHW25	CPM1 LB2 EXPU FCC4 B2 (EMB2 LB1 / LB2- A16)	2	EX3MCK	CPM1 LC2 All LBs B32
3	PB0	CPM1 LA3 All LB's A27	3	RXHW26	CPM1 LB3 EXPU FCC4 B3 (EMB2 LB3-B16)	3	PB1	CPM1 LC3 All LB's B27
4	PB2	CPM1 LA4 All LB's A28	4	TXHW26	CPM1 LB4 EXPU FCC4 B4 (EMB2 LB3-A16)	4	PB3	CPM1 LC4 All LB's B28
5	PB4	CPM1 LA5 All LB's A29	5	RXHW27	CPM1 LB5 EXPU FCC4 B5 (EMB2 LB4-B16)	5	PB5	CPM1 LC5 All LB's B29
6	PB6	CPM1 LA6 All LB's A30	6	TXHW27	CPM1 LB6 EXPU FCC4 B6 (EMB2 LB4-A16)	6	PB7	CPM1 LC6 All LB's B30
7	RX1	CPM1 LA7 IOTU CN1 Pin12	7	RXHW30	CPM1 LB7 EXPU FCC4 B7 (EMB2 LB5-B16)	7	TX1	CPM1 LC7 IOTU CN1 Pin2
8	RX2	CPM1 LA8 IOTU CN1 Pin13	8	TXHW30	CPM1 LB8 EXPU FCC4 B8 (EMB2 LB5-A16)	8	TX2	CPM1 LC8 IOTU CN1 Pin3
9	RX3	CPM1 LA9 IOTU CN1 Pin14	9	RXHW31	CPM1 LB9 EXPU FCC4 B9 (EMB2 LB6-B16)	9	TX3	CPM1 LC9 IOTU CN1 Pin4
10	RX4	CPM1 LA10 IOTU CN1 Pin15	10	TXHW31	CPM1 LB10 EXPU FCC4 B10 (EMB2 LB6-A16)	10	TX4	CPM1 LC10 IOTU CN1 Pin5
11	LANRD+	CPM1 LA11 IOTU CN1 Pin16	11	RXHW32	CPM1 LB11 EXPU FCC4 B11 (EMB2 LB7-B16)	11	LANTD+	CPM1 LC11 IOTU CN1 Pin6
12	LANRD-	CPM1 LA12 IOTU CN1 Pin17	12	TXHW32	CPM1 LB12 EXPU FCC4 B12 (EMB2 LB7-A16)	12	LANTD-	CPM1 LC12 IOTU CN1 Pin7
13	Q4	CPM1 LA13 MMB U3 Pin1	13	RXHW33	CPM1 LB13 EXPU FCC4 B13 (EMB2 LB8-B16)	13	Q5	CPM1 LC13 MMB U3 Pin2
14	Q6	CPM1 LA14 MMB U3 Pin3	14	TXHW33	CPM1 LB14 EXPU FCC4 B14 (EMB2 LB8-A16)	14	Q7	CPM1 LC14 MMB U3 Pin4
15	Q8	CPM1 LA15 MMB U3 Pin5	15	RXHW34	CPM1 LB15 EXPU FCC4 B15 (EMB2 LB9-B16)	15	/PCS_SW0	CPM1 LC15
16	/PCS_SW1	CPM1 LA16	16	TXHW34	CPM1 LB16 EXPU FCC4 B16 (EMB2 LB9-A16)	16		

LA	Наименов. сигнала	Примечание (сигнал к)	LB	Наимен.	Примечание (сигнал к)	LC	Наимен.	Примечание (сигнал к)
17	Синала	(сигнал к)	17	RXHW35	CPM1 LB17	17	Синала	(сигнал к)
17				10(11000	EXPU FCC4 B17 (EMB2 LB10-B16)	17		
18			18	TXHW35	CPM1 LB18 EXPU FCC4 B18 (EMB2 LB10-A16)	18		
19	BSD1	CPM1 LA19	19	RXHW36	CPM1 LB19 EXPU FCC4 B19 (EMB2 LB11-B16)	19	BSD2	CPM1 LC19
20	/PRD	CPM1 LA20 CPM1	20	TXHW36	CPM1 LB20 EXPU FCC4 B20 (EMB2 LB11-A16)	20	/PWR	CPM1 LC20
21			21	RXHW37	CPM1 LB21 EXPU FCC4 B21 (EMB2 LB12-B16)	21	/CSPALAR M00	CPM1 LC21 MMB U1 PIN 19
22	/CSPALARM0 1	CPM1 LA22 MMB U2 PIN 19	22	TXHW37	CPM1 LB22 EXPU FCC4 B22 (EMB2 LB12-A16)	22		
23			23	/TREC2	CPM1 LB23 EXPU FCC5 B24	23		
24			24	/EXPUINJ	CPM1 LB24	24	/IOTUINJ	CPM1 LC24 IOTU CN1 Pin9
25	/MAJALARM	CPM1 LA25 IOTU CN1 Pin18 LB36 ALL LBs	25	PB8	CPM1 LB25 MMB LB A31	25	/MINALAR M	CPM1 LC25 IOTU CN1 Pin8
26	BSD3	CPM1 LA26	26	BSD4	CPM1 LB26	26	/CLKUINJ	CPM1 LC26 CLKU CN2 Pin4
27	/ACTOWN	CPM1 LC27	27	BSD5	CPM1 LB27	27	/PAIRACT	CPM1 LA27
28	/CARDDIS	CPM1 LC28	28	BSD6	CPM1 LB28	28	/PAIRDIS	CPM1 LA28
29	/CARDNOR	CPM1 LC29	29	BSD7	CPM1 LB29	29	/PAIRNOR	CPM1 LA29
30	/CARDINJ	CPM1 LC30	30	GND	M_S* (CPM Slot0 → GND)	30	/PAIRINJ	CPM1 LA30
31	GND		31	GND		31	GND	
32	GND		32	GND		32	GND	

5.4 MMB: Таблица сигналов разъема CPM1-U.

UA	Наименов сигнала	Примечание (сигнал к)	UB	Наимен. сигнала	Примечание (сигнал к)	UC	Наимен. сигнала	Примечание (сигнал к)
1	GND		1	GND		1	GND	
2	GND		2	GND		2	GND	
3			3			3		
4	+5V		4	+5V		4	+5V	
5	+5V		5	+5V		5	+5V	
6			6			6	BSA0	CPM0 UC6
7	2MCK	CPM0 UA7, All LBs A3	7	HDLCRX	CPM0 UB8, All LBs A11	7	BSA1	CPM0 UC7
8	4MCK	CPM0 UA8 ,All LBs A4	8	HDLCTX	CPM0 UB7, All LBs A10	8	/CNCL	CPM0 UC8, All LBs
9	/TREC0	CPM0 UA9, All LBs A8	9	HDLC2	CPM0 UB9, All LBs A12	9	/FH	CPM0 UC9, All LBs B12
10	/TSB0	CPM0 UA10, All LBs A13	10	RXHW12	CPM0 UB10 EXPU FCC1 B1 (EMB1 LB1 / LB2-B16)	10	TXHW01	CPM0 UC10 MMB LB1-A16 , LB2-A16
11	RXHW0 1	CPM0 UA11, MMB LB1-B16, LB2- B16	11	TXHW12	CPM0 UB11 EXPU FCC1 B2 (EMB1 LB1 / LB2-A16)	11	TXHW02	CPM0 UC11 MMB LB3-A16
12	RXHW0 2	CPM0 UA12, MMB LB3-B16	12	RXHW13	CPM0 UB12 EXPU FCC1 B3 (EMB1 LB3-B16)	12	TXHW03	CPM0 UC12 MMB LB4-A16
13	RXHW0 3	CPM0 UA13, MMB LB4-B16	13	TXHW13	CPM0 UB13 EXPU FCC1 B4 (EMB1 LB3-A16)	13	TXHW04	CPM0 UC13 MMB LB5-A16
14	RXHW0 4	CPM0 UA14, MMB LB5-B16	14	RXHW14	CPM0 UB14 EXPU FCC1 B5 (EMB1 LB4-B16)	14	TXHW05	CPM0 UC14 MMB LB6-A16
15	RXHW0 5	CPM0 UA15, MMB LB6-B16	15	TXHW14	CPM0 UB15 EXPU FCC1 B6 (EMB1 LB4-A16)	15	TXHW06	CPM0 UC15 MMB LB7-A16
16	RXHW0 6	CPM0 UA16, MMB LB7-B16	16	RXHW15	CPM0 UB16 EXPU FCC1 B7 (EMB1 LB5-B16)	16	TXHW07	CPM0 UC16 MMB LB8-A16
17	RXHW0 7	CPM0 UA17, MMB LB8-B16	17	TXHW15	CPM0 UB17 EXPU FCC1 B8 (EMB1 LB5-A16)	17	TXHW10	CPM0 UC17 MMB LB9-A16
18	RXHW1 0	CPM0 UA18, MMB LB9-B16	18	RXHW16	CPM0 UB18 EXPU FCC1 B9 (EMB1 LB6-B16)	18	TXHW11	CPM0 UC18 MMB LB10-A16

19	RXHW11	CPM0 UA19, MMB LB10-B16	19	TXHW16	CPM0 UB19 EXPU FCC1 B10 (EMB1 LB6-A16)	19	8MCK	CPM0 UC19 All LBs A20
20	SP8M	CPM0 UA20, All LBs B20	20	RXHW17	CPM0 UB20 EXPU FCC1 B11 (EMB1 LB7-B16)	20	DHLCCLK	CPM0 UC20 All LBs B21
21	SCLK16 M	CPM0 UA21, LBs A33 (From DNIC)	21	TXHW17	CPM0 UB21 EXPU FCC1 B12 (EMB1 LB7-A16)	21	PLL16M	CPM0 UC21 From CLKU CN2 Pin8
22	A0	CPM0 UA22, FDKU CN1 Pin12	22	RXHW20	CPM0 UB22 EXPU FCC1 B13 (EMB1 LB8-B16)	22	A1	CPM0 UC22 FDKU CN1 Pin11
23	A2	CPM0 UA23, FDKU CN1 Pin10	23	TXHW20	CPM0 UB23 EXPU FCC1 B14 (EMB1 LB8-A16)	23	A3	CPM0 UC23 FDKU CN1 Pin9
24	A4	CPM0 UA24 FDKU CN1 Pin8	24	RXHW21	CPM0 UB24 EXPU FCC1 B15 (EMB1 LB9-B16)	24	A5	CPM0 UC24 FDKU CN1 Pin7
25	A6	CPM0 UA25 FDKU CN1 Pin6	25	TXHW21	CPM0 UB25 EXPU FCC1 B16 (EMB1 LB9-A16)	25	A7	CPM0 UC25 FDKU CN1 Pin5
26	A8	CPM0 UA26 FDKU CN1 Pin27	26	RXHW22	CPM0 UB26 EXPU FCC1 B17 (EMB1 LB10-B16)	26	A9	CPM0 UC26 FDKU CN1 Pin26
27	A10	CPM0 UA27 FDKU CN1 Pin25	27	TXHW22	CPM0 UB27 EXPU FCC1 B18 (EMB1 LB10-A16)	27	A11	CPM0 UC27 FDKU CN1 Pin23
28	A12	CPM0 UA28 FDKU CN1 Pin4	28	RXHW23	CPM0 UB28 EXPU FCC1 B19 (EMB1 LB11-B16)	28	BSD0	CPM0 UC28
29	D24	CPM0 UA29 FDKU CN1 Pin13 MMB U1 Pin18 MMB U1 Pin18	29	TXHW23	CPM0 UB29 EXPU FCC1 B20 (EMB1 LB11-A16)	29	D25	CPM0 UC29 FDKU CN1 Pin14 MMB U1 Pin17 MMB U2 Pin17
30	D26	CPM0 UA30 FDKU CN1 Pin15 MMB U1 Pin16 MMB U2 Pin16	30	RXHW24	CPM0 UB30 EXPU FCC1 B21 (EMB1 LB12-B16)	30	D27	CPM0 UC30 FDKU CN1 Pin17 MMB U1 Pin15 MMB U2 Pin15
31	D28	CPM0 UA31 FDKU CN1 Pin18 MMB U1 Pin14 MMB U2 Pin14	31	TXHW24	CPM0 UB31 EXPU FCC1 B22 (EMB1 LB12-A16)	31	D29	CPM0 UC31 FDKU CN1 Pin19 MMB U2 Pin13
32	D30	CPM0 UA32 FDKU CN1 Pin20	32	/TREC1	CPM0 U32 EXPU FCC2 B24	32	D31	CPM0 UC32 FDKU CN1 Pin21

5.5 ММВ: Таблица сигналов разъема СРМ1- L.

LA	Наименов. сигнала	Примечание (сигнал к)	LB	Наимен. сигнала	•	LC	Наимен.	Примечание (сигнал к)
1	/DISK_RW	CPM0 LA1 FDKU CN1 Pin 31	1	RXHW2 5	CPM0 LB1 EXPU FCC4 B1 (EMB2 LB1 / LB2-B16)	1	/DISK_OE	CPM0 LC1 FDKU CN1 Pin 24
2	/CS_DISK	CPM0 LA2 FDKU CN1 Pin 22	2	TXHW25	CPM0 LB2 EXPU FCC4 B2 (EMB2 LB1 / LB2-A16)			CPM0 LC2 All LBs B32
3	PB0	CPM0 LA3 All LB's A27	3	RXHW2 6	CPM0 LB3 EXPU FCC4 B3 (EMB2 LB3-B16)	3	PB1	CPM0 LC3 All LB's B27
4	PB2	CPM0 LA4 All LB's A28	4	TXHW26	CPM0 LB4 EXPU FCC4 B4 (EMB2 LB3-A16)	4	PB3	CPM0 LC4 All LB's B28
5	PB4	CPM0 LA5 All LB's A29	5	RXHW2 7	CPM0 LB5 EXPU FCC4 B5 (EMB2 LB4-B16)	5	PB5	CPM0 LC5 All LB's B29
6	PB6	CPM0 LA6 All LB's A30	6	TXHW27	CPM0 LB6 EXPU FCC4 B6 (EMB2 LB4-A16)	6	PB7	CPM0 LC6 All LB's B30
7	RX1	CPM0 LA7 IOTU CN1 Pin12	7	RXHW3 0	CPM0 LB7 EXPU FCC4 B7 (EMB2 LB5-B16)	7	TX1	CPM0 LC7 IOTU CN1 Pin2
8	RX2	CPM0 LA8 IOTU CN1 Pin13	8	TXHW30	CPM0 LB8 EXPU FCC4 B8 (EMB2 LB5-A16)	8	TX2	CPM0 LC8 IOTU CN1 Pin3
9	RX3	CPM0 LA9 IOTU CN1 Pin14	9	RXHW3 1	CPM0 LB9 EXPU FCC4 B9 (EMB2 LB6-B16)	9	TX3	CPM0 LC9 IOTU CN1 Pin4
10	RX4	CPM0 LA10 IOTU CN1 Pin15	10	TXHW31	CPM0 LB10 EXPU FCC4 B10 (EMB2 LB6-A16)	10	TX4	CPM0 LC10 IOTU CN1 Pin5
11	LANRD+	CPM0 LA11 IOTU CN1 Pin16	11	RXHW3 2	CPM0 LB11 EXPU FCC4 B11 (EMB2 LB7-B16)	11	LANTD+	CPM0 LC11 IOTU CN1 Pin6
12	LANRD-	CPM0 LA12 IOTU CN1 Pin17	12	TXHW32	CPM0 LB12 EXPU FCC4 B12 (EMB2 LB7-A16)	12	LANTD-	CPM0 LC12 IOTU CN1 Pin7
13	Q4	CPM0 LA13 MMB U3 Pin1	13	RXHW3 3	CPM0 LB13 EXPU FCC4 B13 (EMB2 LB8-B16)	13	Q5	CPM0 LC13 MMB U3 Pin2

LA	Наименов. сигнала	Примеч	ание (сигнал	LB	Наимен.	•	оимечание сигнал к)	LC	Наимен.		римечание (сигнал к)
14	Q6	CPM0 MMB U3	LA14	14	TXHW33	CPM0 EXPU	LB14 FCC4 B14 _B8-A16)	14	Q7	CPM0 MMB U	LC14
15	Q8	CPM0 MMB U3	LA15 Pin5	15	RXHW3 4	EXPU	LB15 FCC4 B15 _B9-B16)	15	/PCS_SW 0	CPM0	LC15
16	/PCS_SW1	CPM0	LA16	16	TXHW34	EXPU	LB16 FCC4 B16 _B9-A16)	16			
17				17	RXHW3 5	EXPU	LB17 FCC4 B17 _B10-B16)	17			
18				18	TXHW35	EXPU	LB18 FCC4 B18 _B10-A16)	18			
19	BSD1	CPM0	LA19	19	RXHW3 6	EXPU	LB19 FCC4 B19 _B11-B16)	19	BSD2	CPM0	LC19
20	/PRD	CPM0 CPM0	LA20	20	TXHW36	EXPU	LB20 FCC4 B20 _B11-A16)	20	/PWR	CPM0	LC20
21				21	RXHW3 7	EXPU	LB21 FCC4 B21 _B12-B16)	21	/CSPALAR M00		LC21 U1 PIN 19
22	/CSPALARM0 1	CPM0 MMB U2	LA22 PIN 19	22	TXHW73 7	EXPU	LB22 FCC4 B22 _B12-A16)	22			
23				23	/TREC2	CPM0 FCC5 B	LB23 EXPU 24	23			
24				24	/EXPUIN J	CPM0	LB24	24	/IOTUINJ	CPM0 IOTU C	
25	/MAJALARM	IOTU CN	LA25 N1 Pin18 ALL LBs	25	PB8	CPM0 L MMB LE		25	/MINALAR M	CPM0 IOTU C	
26	BSD3	CPM0	LA26	26	BSD4	CPM0	LB26	26	/CLKUINJ		C26 N2 Pin4
27	/ACTOWN	CPM0	LC27	27	BSD5	CPM0	LB27	27	/PAIRACT	CPM0	LA27
28	/CARDDIS	СРМ0	LC28	28	BSD6	CPM0	LB28		/PAIRDIS		LA28
29	/CARDNOR	СРМ0	LC29	29	BSD7	CPM0	LB29	29	/PAIRNOR	СРМ0	LA29
30	/CARDINJ	СРМ0	LC30	30		M_S* (CPM S	lot0 → GND)	30	/PAIRINJ	CPM0	LA30
31	GND			31	GND			31	GND		
32	GND			32	GND			32	GND		

5.6 MMB: Таблица сигналов разъемов LB1-LB10.

Сторона А	Сигнал	Провод к РСВ	Примечание	Сторона В	Сигнал	Провод к РСВ	Примечание
1	+5V	PSU	All LBs	1	+5V	PSU	All LBs
2	+5V	PSU	All LBs	2	+5V	PSU	All LBs
3	2MCK	CPM0,1 UA7	All LBs	3	/CNCL	CPM0,1 UC8	All LBs
4	4MCK	CPM0,1 UA8	All LBs	4	/E ¹ Signals		See notes
5				5			
6				6			
7				7			
8	/TREC0	CPM0,1 UA9	All LBs	8			
9	7111200	01 1110, 1 0/10	711 250	9			
10	HDLCTX	CPM0 UB8 CPM1 UB7	All LBs	10	PRD	PSU0,1 B8 RGU0,1 B8	All LBs
11	HDLCRX	CPM0 UB7 CPM1 UB8	All LBs	11		11000,120	
12	HDLC2	CPM0,1 UB9	All LBs	12	/FH	CPM0,1 UC9	All LBs
13	/TSB0	CPM0,1 UA10	All LBs	13	7111	O1 1010,1 000	7 til LDG
14	71300	CF WIO, I OATO	All LDS	14			
	OND		All LBs		OND		AULD-
15 16	GND TXHW	CPM0,1 UC10-	See note ² for details.	15 16	GND RXHW	CPM0,1 UA11-19	All LBs See notes for
	IAHW	18	See note for details.		KANV	CFINIO, I DATI-19	details.
17				17			
18				18			
19				19			
20	8MCK	CPM0,1 UC19	CPM to LBs	20	SP8M	CPM0,1 UA20	8M Sync, CPM to LBs
21				21	HDLCCLK	CPM0,1 UC20	HDLC Clock
22	GND		All LBs	22	GND		All LBs
23				23			
24	GND	PBS4	All LBs	24	GND	PBS5	All LBs
25	GND	PBS0	0	25		PBS1	1
26	GND	PBS2	0	26	GND	PBS3	0
27	PB0	CPM0,1 LA3	All LBs	27	PB1	CPM0,1 LC3	All LBs
28	PB2	CPM0,1 LA4	All LBs	28	PB3	CPM0,1 LC4	All LBs
29	PB4	CPM0,1 LA5	All LBs	29	PB5	CPM0,1 LC5	All LBs
30	PB6	CPM0,1 LA6	All LBs	30	PB7	CPM0,1 LC6	All LBs
31	PB8	CPM0,1 LB25	All LBs	31	CLK3M	OF IVIO, I LOO	Reserved
			(Reserved)			00140 4 1 00	
32	/EXMCCL	CPM0,1 UC7	All LBs (Reserved)	32	EX3MCK	CPM0,1 LC2	All LBs (Reserved)
33	SCLK16M	CPM0,1 UA21	All LBs (LBs to CPM)	33	E8K	CLKU CN1 Pin5	All LBs (LBs to CLKU)
34				34			
35	Sync A	LBs	All LBs (LB only)	35	Sync B	LBs	All LBs (LB only)
36	Sync CTRL	LBs	All LBs (LB only)	36	/MAJALARM	CPM1,1 LA25	
37				37			
38	-5V	PSU		38	-5V	PSU	
39				39			
40	-48V	PSU	All LBs	40	-48V	PSU	All LBs
41	-48V	PSU	All LBs	41	-48V	PSU	All LBs
42			200	42		. 55	220
43	RING	RGU PSU	All LBs	43	RING	RGU PSU	All LBs
44	11110	.100100	, LD0	44		.100100	, LD0
45	FGND			45	FGND		
	I GND				I GIND		
46	LOND			46	LOND		
47	LGND			47	LGND		
48	LGND			48	LGND		
49	GND			49	GND		
50	GND			50	GND		

163 УСТАНОВКА СИСТЕМЫ

5.7 Назначение контактов разъема (PSU-A/PSU-D0: верхняя сторона).

Α	Сигнал	Примечание	В	Сигнал	ПРимечание
1	+5V	Wire to MMB All LBs(1A, 1B, 2A,	1	+5V	Wire to MMB All LBs
2	+5V	2B)	2	+5V	(1A, 1B, 2A, 2B)
3	+5V		3	+5V	
4	+5V		4	+5V	
5	+5V		5	+5V	
6	+5V		6	+5V	
7	DC0_INJ	Wire to MMB U1 Pin4	7	PWR_ID	Wire to MMB U1 Pin6 (74HC245) (A Power → High, DC/DC → GND)
8	RG0_FAIL	Wire to RGU0 A8	8	PRD	Wire to MMB 10B
9	AC_FAIL	Wire to MMB U2 Pin8	9	54V0_FAIL	Wire to MMB U2 Pin4 (74HC245)
10	5V0_FAIL	Wire to MMB U2 Pin6	10	-5V	Wire to MMB 38A, 38B
11			11		
12	-54V	Wire to MMB All LBs (40A, 40B, 41A, 41B)	12	-54V	Wire to MMB All LBs
13	-54V		13	-54V	(40A, 40B, 41A, 41B)
14	-54V		14	-54V	
15	-54V		15	-54V	
16	-54V		16	-54V	
17			17		
18	RING	Wire to MMB All LBs (43A, 43B)	18	RING	Wire to MMB All LBs (43A, 43B)
19			19		
20	LGND	Wire to MMB All LBs (47A, 47B,	20	LGND	Wire to MMB All LBs
21	LGND	48A, 48B)	21	LGND	(47A, 47B, 48A, 48B)
22	LGND		22	LGND	
23	LGND		23	LGND	
24	LGND		24	LGND	
25	GND	Wire to MMB All LBs	25	GND	Wire to MMB All LBs
26	GND	(15A, 15B, 49A, 49B, 50A, 50B)	26	GND	(15A, 15B, 49A, 49B,
27	GND		27	GND	50A, 50B)
28	GND		28	GND	
29	GND		29	GND	
30	GND		30	GND	

5.8 ММВ: Назначение контактов разъема (PSU-A/PSU-D1: Нижняя сторона).

A Currian Примечание B Currian Примечание 1 +5V Wire to MMB All LBs(1A, 1B, 2A, 2B) 1 +5V Wire to MMB All LBs (1A, 1B, 2A, 2B) 1 +5V Wire to MMB All LBs (1A, 1B, 2A, 2B) 2 +5V Wire to MMB All LBs (1A, 1B, 2A, 2B) 3 +5V 4 +5V 3 +5V 4 +5V 4 +5V 5 +5V 6 +5V 6 +5V 7 PUR_ ID Wire to MMB U1 Pin6 (74HC245) 6 +5V 7 PWR_ ID Wire to MMB U1 Pin6 (74HC245) 6 +5V 7 PWR_ ID Wire to MMB U1 Pin6 (74HC245) 9 54V1_FAIL Wire to MMB 10B Wire to MMB U2 Pin7 (74HC245) 9 54V1_FAIL Wire to MMB U2 Pin7 (74HC245) 10 -5V Wire to MMB 38A, 38B 11 11 11 11 11 11 11 11 11 11 11 12 -54V Wire to MMB All LBs (40A, 40B, 41A, 41B) 12 -54V Wire to MMB All LBs (40A, 40B, 41A, 41B) 12 -54V 14 -54V 15	Δ.	Curuor	Применения	В	Curuon	ПВименения
2 +5V 3 +5V 4 +5V 5 +5V 6 +5V 6 +5V 7 DC1_INJ Wire to MMB U1 Pin5 (74HC245) 8 RG1_FAIL Wire to RGU1 A8 9 AC_FAIL Wire to MMB U2 Pin8 (74HC245) 9 54V1_FAIL Wire to MMB U2 Pin7 (74HC245) 10 5V1_FAIL Wire to MMB U2 Pin7 (74HC245) 11 2 -54V Wire to MMB All LBs (40A, 40B, 41A, 41B) 11 12 -54V Wire to MMB All LBs (40A, 40B, 41A, 41B) 11 2 -54V Wire to MMB All LBs (40A, 40B, 41A, 41B) 11 3 -54V 15 -54V 16 -54V 17 17 18 RING Wire to MMB All LBs (43A, 43B) 19 20 LGND Wire to MMB All LBs (47A, 47B, 48A, 48B) 21 LGND 22 LGND 23 LGND 24 LGND 24 LGND 25 GND Wire to MMB All LBs (15A, 15B, 49A, 49B, 50A, 50B) 22 GND 29 GND 23 GND 29 GND 24 LGND 28 GND 29 GND			•			
3 +5V 4 +5V 5 +5V 6 +5V 7 DC1_INJ Wire to MMB U1 Pin5 (74HC245) 7 DC1_INJ Wire to RGU1 A8 8 RG1_FAIL Wire to RGU1 A8 9 AC_FAIL Wire to MMB U2 Pin8 (74HC245) 9 54V1_FAIL Wire to MMB U2 Pin7 (74HC245) 10 5V1_FAIL Wire to MMB U2 Pin7 (74HC245) 11 11 12 -54V Wire to MMB All LBs (40A, 40B, 41A, 41B) 13 -54V 14 -54V 15 -54V 16 -54V 17 18 RING Wire to MMB All LBs (43A, 43B) 19 20 LGND Wire to MMB All LBs (47A, 47B, 48A, 48B) 21 LGND 22 LGND 23 LGND 24 LGND 25 GND 26 GND 27 GND 27 GND 28 GND 29 GND 29 GND 29 GND 29 GND 29 GND 20 Vire to MMB All LBs (49A, 49B, 49A, 49B, 50A, 50B) 28 GND 29 GND 29 GND 20 GND	-	-	WITE TO INIVIB All LBS(TA, TB, ZA, ZB)		-	
4 +5V 5 +5V 5 +5V 6 +5V 7 DC1_INJ Wire to MMB U1 Pin5 (74HC245) 7 PWR_ID Wire to MMB U1 Pin5 (74HC245) 8 RG1_FAIL Wire to RGU1 A8 9 AC_FAIL Wire to MMB U2 Pin8 (74HC245) 9 54V1_FAIL Wire to MMB U2 Pin7 (74HC245) 10 5V1_FAIL Wire to MMB U2 Pin7 (74HC245) 11 2 -54V Wire to MMB U2 Pin7 (74HC245) 12 -54V Wire to MMB All LBs (40A, 40B, 41A, 41B) 13 -54V 15 -54V 15 -54V 16 -54V 17 18 RING Wire to MMB All LBs (43A, 43B) 19 PUR Wire to MMB All LBs (47A, 47B, 48A, 48B) 19 PUR Wire to MMB All LBs (47A, 47B, 48A, 48B) 20 LGND Wire to MMB All LBs (47A, 47B, 48A, 48B) 21 LGND 22 LGND 23 LGND 23 LGND 24 LGND 25 GND Wire to MMB All LBs (45A, 45B, 49A, 49B, 50A, 50B) 28 GND (15A, 15B, 49A, 49B, 50A, 50B) 29 GND 20 GND 20 GND 21 GND 22 GND 23 GND 24 GND 25 GND 26 GND 27 GND 28 GND 29 GND		-		_	-	(171, 12, 271, 25)
5 +5V 6 +5V 6 +5V 6 +5V 6 +5V 6 +5V 7 DC1_INJ Wire to MMB U1 Pin5 (74HC245) 7 PWR_ID Wire to MMB U1 Pin6 (74HC245) (A Power → High, DC/IDC → GND) Wire to MMB U2 Pin8 (74HC245) 9 54V1_FAIL Wire to MMB U2 Pin7 (74HC245) 10 -5V Wire to MMB U2 Pin7 (74HC245) 11 -5V Wire to MMB All LBs (40A, 40B, 41A, 41B) 12 -54V Wire to MMB All LBs (40A, 40B, 41A, 41B) 12 -54V Wire to MMB All LBs (40A, 40B, 41A, 41B) 13 -54V (40A, 40B, 41A, 41B) 14 -54V 15 -54V 16 -54V		-		-	-	
6 +5V 7 DC1_INJ Wire to MMB U1 Pin5 (74HC245) 7 PWR_ID Wire to MMB U1 Pin6 (74HC245) 8 RG1_FAIL Wire to RGU1 A8 9 AC_FAIL Wire to MMB U2 Pin8 (74HC245) 9 54V1_FAIL Wire to MMB U2 Pin5 (74HC245) 10 5V1_FAIL Wire to MMB U2 Pin7 (74HC245) 11 5V1_FAIL Wire to MMB U2 Pin7 (74HC245) 11 11 12 -54V Wire to MMB All LBs (40A, 40B, 41A, 41B) 11 12 -54V Wire to MMB All LBs (40A, 40B, 41A, 41B) 11 -54V 15 -54V 16 -54V 16 -54V 17 17 18 RING Wire to MMB All LBs (43A, 43B) 19 19 20 LGND Wire to MMB All LBs (47A, 47B, 48A, 48B) 21 LGND 22 LGND 22 LGND 22 LGND 23 LGND 24 LGND 24 LGND 24 LGND 25 GND (15A, 15B, 49A, 49B, 50A, 50B) 22 GND 28 GND 29 GND 29 GND 29 GND 20 GND 20 GND 20 GND 21 GND 22 GND 22 GND 23 LGND 24 LGND 25 GND (15A, 15B, 49A, 49B, 50A, 50B) 26 GND 27 GND 27 GND 28 GND 29 GND	-			-	-	
7 DC1_INJ Wire to MMB U1 Pin5 (74HC245) 7 PWR_ID Wire to MMB U1 Pin6 (74HC245) (A Power → High, DC/DC → GND) 8 RG1_FAIL Wire to RGU1 A8 8 PRD Wire to MMB 10B Wire to MMB U2 Pin8 (74HC245) 9 54V1_FAIL (74HC245) 10 5V1_FAIL Wire to MMB U2 Pin7 (74HC245) 10 -5V Wire to MMB 38A, 38B 11 11 11 11 11 11 11 11 11 11 11 11 11		-			-	
(74HC245) (A Power → High, DC/DC → GND) 8 RG1_FAIL Wire to RGU1 A8		-			_	14" / 141B II/ BI A
9 AC_FAIL Wire to MMB U2 Pin8 (74HC245) 9 54V1_FAIL Wire to MMB U2 Pin5 (74HC245) 10 5V1_FAIL Wire to MMB U2 Pin7 (74HC245) 10 -5V Wire to MMB 38A, 38B 11	/	DC1_INJ	Wire to MMB U1 Pin5 (74HC245)	7	PWR_ID	(74HC245) (A Power → High,
10 5V1_FAIL Wire to MMB U2 Pin7 (74HC245) 10 -5V Wire to MMB 38A, 38B	8	RG1_FAIL	Wire to RGU1 A8	8	PRD	Wire to MMB 10B
11	9	AC_FAIL	Wire to MMB U2 Pin8 (74HC245)	9	54V1_FAIL	
12 -54V Wire to MMB All LBs (40A, 40B, 41A, 41B) 13 -54V 14 -54V 15 -54V 16 -54V 17 18 RING Wire to MMB All LBs (43A, 43B) 19 20 LGND Wire to MMB All LBs (47A, 47B, 48A, 48B) 21 LGND 22 LGND 23 LGND 24 LGND 25 GND Wire to MMB All LBs 26 GND 27 GND 28 GND 29 GND Wire to MMB All LBs (40A, 40B, 41A, 41B) 11 -54V	10	5V1_FAIL	Wire to MMB U2 Pin7 (74HC245)	10	-5V	
13 -54V (40A, 40B, 41A, 41B) 14 -54V 14 -54V 15 -54V 15 -54V 16 -54V 16 -54V 17 17 17 18 RING Wire to MMB All LBs (43A, 43B) 18 RING Wire to MMB All LBs (43A, 43B) 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 10	11			11		
14 -54V 15 -54V 16 -54V 17 17 18 RING Wire to MMB All LBs (43A, 43B) 18 RING Wire to MMB All LBs (43A, 43B) 19 20 LGND Wire to MMB All LBs (47A, 47B, 48A, 48B) 20 LGND Wire to MMB All LBs (47A, 47B, 48A, 48B) 21 LGND 22 LGND 22 LGND 23 LGND 24 LGND 24 LGND 25 GND Wire to MMB All LBs (15A, 15B, 49A, 49B, 50A, 50B) 28 GND 29 GND 29 GND	12	-54V	Wire to MMB All LBs (40A, 40B, 41A, 41B)	12	-54V	Wire to MMB All LBs
15 -54V 16 -54V 17 17 18 RING Wire to MMB All LBs (43A, 43B) 18 RING Wire to MMB All LBs (43A, 43B) 19 19 20 LGND Wire to MMB All LBs (47A, 47B, 48A, 48B) 20 LGND Wire to MMB All LBs (47A, 47B, 48A, 48B) 21 LGND 21 LGND (47A, 47B, 48A, 48B) 22 LGND 22 LGND 23 LGND 23 LGND 24 LGND 24 LGND 25 GND 24 LGND 25 GND Wire to MMB All LBs (15A, 15B, 49A, 49B, 50A, 50B) 26 GND 27 GND 27 GND 50A, 50B) 28 GND 29 GND	13	-54V		13	-54V	(40A, 40B, 41A, 41B)
16 -54V 17 17 18 RING Wire to MMB All LBs (43A, 43B) 18 RING Wire to MMB All LBs (43A, 43B) 19 19 20 LGND Wire to MMB All LBs (47A, 47B, 48A, 48B) 20 LGND Wire to MMB All LBs (47A, 47B, 48A, 48B) 21 LGND 21 LGND (47A, 47B, 48A, 48B) 22 LGND 23 LGND (47A, 47B, 48A, 48B) 23 LGND 23 LGND Wire to MMB All LBs (47A, 47B, 48A, 48B) 24 LGND 23 LGND Wire to MMB All LBs (47A, 47B, 48A, 48B) 25 GND 24 LGND Wire to MMB All LBs (47A, 47B, 48A, 48B) 25 GND 25 GND (15A, 15B, 49A, 49B, 50A, 50B) 26 GND 26 GND (15A, 15B, 49A, 49B, 50A, 50B) 27 GND 28 GND 29 GND 29 GND	14	-54V		14	-54V	
17 18 RING Wire to MMB All LBs (43A, 43B) 18 RING Wire to MMB All LBs (43A, 43B) 19 20 LGND Wire to MMB All LBs (47A, 47B, 48A, 48B) 21 LGND 22 LGND 23 LGND 24 LGND 25 GND Wire to MMB All LBs 26 GND (15A, 15B, 49A, 49B, 50A, 50B) 27 GND 28 GND 29 GND 20 LGND 21 LGND 20 LGND 21 LGND 21 LGND 22 LGND 23 LGND 24 LGND 25 GND 26 GND 27 GND 28 GND 29 GND	15	-54V		15	-54V	
18 RING Wire to MMB All LBs (43A, 43B) 18 RING Wire to MMB All LBs (43A, 43B) 19 19 20 LGND Wire to MMB All LBs (47A, 47B, 48A, 48B) 20 LGND Wire to MMB All LBs (47A, 47B, 48A, 48B) 21 LGND 21 LGND (47A, 47B, 48A, 48B) 22 LGND 22 LGND 23 LGND 23 LGND 24 LGND 24 LGND 25 GND 24 LGND 26 GND (15A, 15B, 49A, 49B, 50A, 50B) 26 GND 27 GND 27 GND 28 GND 29 GND	16	-54V		16	-54V	
19	17			17		
20 LGND Wire to MMB All LBs (47A, 47B, 48A, 48B) 20 LGND Wire to MMB All LBs (47A, 47B, 48A, 48B) 21 LGND 21 LGND (47A, 47B, 48A, 48B) 22 LGND 22 LGND 23 LGND 23 LGND 24 LGND 24 LGND 25 GND Wire to MMB All LBs 25 GND Wire to MMB All LBs 26 GND 26 GND (15A, 15B, 49A, 49B, 50A, 50B) 50A, 50B) 28 GND 28 GND 29 GND 29 GND	18	RING	Wire to MMB All LBs (43A, 43B)	18	RING	
21 LGND 21 LGND (47A, 47B, 48A, 48B) 22 LGND 22 LGND 23 LGND 23 LGND 24 LGND 24 LGND 25 GND Wire to MMB All LBs 25 GND Wire to MMB All LBs 26 GND (15A, 15B, 49A, 49B, 50A, 50B) 26 GND (15A, 15B, 49A, 49B, 50A, 50B) 27 GND 27 GND 50A, 50B) 29 GND 29 GND	19			19		
22 LGND 23 LGND 24 LGND 25 GND 26 GND 27 GND 28 GND 29 GND 29 GND 20 LGND 22 LGND 23 LGND 24 LGND 25 GND 26 GND 27 GND 28 GND 29 GND 29 GND 20 GND 21 LGND 22 LGND 23 LGND 24 LGND 25 GND 26 GND 27 GND 28 GND 29 GND 29 GND	20	LGND	Wire to MMB All LBs (47A, 47B, 48A, 48B)	20	LGND	Wire to MMB All LBs
23 LGND 24 LGND 25 GND 26 GND 27 GND 28 GND 29 GND 29 GND 23 LGND 24 LGND 25 GND 26 GND 27 GND 28 GND 29 GND	21	LGND		21	LGND	(47A, 47B, 48A, 48B)
24 LGND 25 GND 26 GND 27 GND 28 GND 29 GND 24 LGND 25 GND 26 GND 27 GND 28 GND 29 GND 24 LGND 25 GND 26 GND 50A, 50B) 50A, 50B)	22	LGND		22	LGND	
25 GND Wire to MMB All LBs 25 GND Wire to MMB All LBs 26 GND (15A, 15B, 49A, 49B, 50A, 50B) 26 GND (15A, 15B, 49A, 49B, 50A, 50B) 27 GND 27 GND 50A, 50B) 28 GND 29 GND 29 GND 29 GND	23	LGND		23	LGND	
26 GND (15A, 15B, 49A, 49B, 50A, 50B) 26 GND (15A, 15B, 49A, 49B, 50A, 50B) 27 GND 28 GND 28 GND 29 GND 29 GND	24	LGND		24	LGND	
27 GND 27 GND 50A, 50B) 28 GND 28 GND 29 GND 29 GND	25	GND	Wire to MMB All LBs	25	GND	Wire to MMB All LBs
27 GND 28 GND 29 GND 29 GND 29 GND	26	GND	(15A, 15B, 49A, 49B, 50A, 50B)	26	GND	
29 GND 29 GND	27	GND		27	GND	50A, 50B)
	28	GND		28	GND	
30 GND 30 GND	29	GND		29	GND	
	30	GND		30	GND	

5.9 ММВ: Назначение контактов разъема RGU0 (верхняя сторона).

Α	Сигнал	Примечание	В	Сигнал	Примечание
1	+5V	Wire to MMB All LBs (1A, 1B, 2A, 2B)	1	+5V	Wire to MMB All LBs
2	+5V		2	+5V	(1A, 1B, 2A, 2B)
3	+5V		3	+5V	
4	+5V		4	+5V	
5	+5V		5	+5V	
6	+5V		6	+5V	
7					
8	RGOA	(RTX0) Wire to RGU(Lower) RRX	8	RGOB	(RRX0) Wire to RGU(Lower) RTX
9	RG0_FAIL	Wire to MMB U2 Pin2	9	PRD	Wire to MMB 10B
10	RG0_INJ	Wire to MMB U1 Pin2	10		
11			11		
12	-54V	Wire to MMB All LBs (40A, 40B, 41A,	12	-54V	Wire to MMB All LBs
13	-54V	41B)	13	-54V	(40A, 40B, 41A, 41B)
14	-54V		14	-54V	
15	-54V		15	-54V	
16	-54V		16	-54V	
17			17		
18	RING	Wire to MMB All LBs (43A, 43B)	18	RING	Wire to MMB All LBs (43A, 43B)
19			19		
20	LGND	Wire to MMB All LBs (47A, 47B, 48A,	20	LGND	Wire to MMB All LBs
21	LGND	48B)	21	LGND	(47A, 47B, 48A, 48B)
22	LGND		22	LGND	
23	LGND		23	LGND	
24	LGND		24	LGND	
25	GND	Wire to MMB All LBs	25	GND	Wire to MMB All LBs
26	GND	(15A, 15B, 49A, 49B, 50A, 50B)	26	GND	(15A, 15B, 49A, 49B,
27	GND		27	GND	50A, 50B)
28	GND		28	GND	
29	GND		29	GND	
30	GND		30	GND	

5.10 MMB: Назначение контактов разъема RGU1 (нижняя сторона).

Α	Сигнал	Примечание	В	Сигнал	Примечание
1	+5V	Wire to MMB All LBs	1	+5V	Wire to MMB All LBs
2	+5V	(1A, 1B, 2A, 2B)	2	+5V	(1A, 1B, 2A, 2B)
3	+5V		3	+5V	
4	+5V		4	+5V	
5	+5V		5	+5V	
6	+5V		6	+5V	
7					
8	RGOB	(RTX1) Wire to RGU(Upper) RRX	8	RGOA	(RRX1) Wire to RGU(Upper) RTX
9	RG1_FAIL	Wire to MMB U2 Pin3	9	PRD	Wire to MMB 10B
10	RG1_INJ	Wire to MMB U1 Pin3	10		
11			11		
12	-54V	Wire to MMB (40A, 40B, 41A, 41B)	12	-54V	Wire to MMB (40A, 40B,
13	-54V		13	-54V	41A, 41B)
14	-54V		14	-54V	
15	-54V		15	-54V	
16	-54V		16	-54V	
17			17		
18	RING	Wire to MMB All LBs (43A, 43B)	18	RING	Wire to MMB All LBs (43A, 43B)
19			19		
20	LGND	Wire to MMB All LBs	20	LGND	Wire to MMB All LBs
21	LGND	(47A, 47B, 48A, 48B)	21	LGND	(47A, 47B, 48A, 48B)
22	LGND		22	LGND	
23	LGND		23	LGND	
24	LGND		24	LGND	
25	GND	Wire to MMB All LBs	25	GND	Wire to MMB All LBs
26	GND	(15A, 15B, 49A, 49B, 50A, 50B)	26	GND	(15A, 15B, 49A, 49B,
27	GND		27	GND	50A, 50B)
28	GND		28	GND	
29	GND		29	GND	
30	GND		30	GND	

5.11 CN8 MMB – Назначение контактов модуля IOTU.

№ конт.	Сигнал	Пров	од к	№ конт.	Сигнал	Провод	К
1	+5V			1	+5V		
2				2			
3	TX1	CPM0,CPM1	LC8	3	RX1	CPM0,CPM1	LA8
4	TX2	CPM0,CPM1	LC9	4	RX2	CPM0,CPM1	LA9
5	TX3	CPM0,CPM1	LC10	5	RX3	CPM0,CPM1 LA10	
6	LANTD+	CPM0,CPM1	LC11	6	LANRD+	CPM0,CPM1 LA11	
7	LANTD-	CPM0,CPM1	LC12	7	LANRD-	CPM0,CPM1 LA12	
8	/MINALARM	CPM0,CPM1	LC25	8	/MAJALARM	CPM0,CPM1 LA25	
9	/IOTUINJ	CPM0,CPM1	LC24	9	GND		
10	GND			10	GND		

5.12 CN9 MMB – Назначение контактов модуля CLKU.

№ конт.	Сигнал	Провод к	№ конт.	Сигнал	Провод к
1	+5V		11	+5V	
2	+5V		12	+5V	
3	E8K	ALL LBs : LB33	13		
4			14		
5			15		
6			16		
7			17		
8	GND		18	GND	
9	/CLKUINJ	CPM0, CPM1: LC26	19	PLL16M	CPM0, CPM1: UC21
10	GND		20	GND	

5.13 CN U5 MMB – Назначение сигналов модуля FDKU.

№ конт.	Сигнал	Провод к	№ конт.	Сигнал	Провод к
1	-		17	D27	CPM0,1 UC30
2	-		18	D28	CPM0,1 UA31
3	-		19	D29	CPM0,1 UC31
4	A12	CPM0,1 UA28	20	D30	CPM0,1 UA32
5	A7	CPM0,1 UC25	21	D31	CPM0,1 UC32
6	A6	CPM0,1 UA25	22	/CS_DISK	CPM0,1 LA2
7	A5	CPM0,1 UC24	23	A10	CPM0,1 UA27
8	A4	CPM0,1 UA24	24	/DISK_OE	CPM0,1 LC1
9	A3	CPM0,1 UC23	25	A11	CPM0,1 UC27
10	A2	CPM0,1 UA23	26	A9	CPM0,1 UC26
11	A1	CPM0,1 UC22	27	A8	CPM0,1 UA26
12	A0	CPM0,1 UA22	28	-	
13	D24	CPM01 UA29	29	-	
14	D25	CPM0,1 UC29	30	-	
15	D26	CPM0,1 UA30	31	/DISK_RW	CPM0,1 LA1
16	GND	ALL LBs AB49.50	32	+5V	ALL LBs AB1.2

5.14 EMB1: LB1 – LB12 назначение сигналов.

Α	Сигнал	Провод к РСВ	Примечание	В	Сигнал	Провод к РСВ	Comment
1	+5V		All LB	1	+5V		All LB
2	+5V		All LB	2	+5V		All LB
3	2MCK	FCC3 Pin5	All LB	3	/CNCL	FCC3 Pin 1	All LB
4	4MCK	FCC3 Pin4	All LB	4	/E ³ Signals	FCC2 Pin[1 – 10]	See notes for details. See the FCC pin definition for the status of connection with FCC.
5				5			
7				7			
8	/TREC1	FCC2 Pin22	All LBs	8			
9				9			
10	HDLCTX	FCC3 Pin10	All LBs	10	PRD	PSU0,1 B8 RGU0,1 B8	All LBs
11	HDLCRX	FCC3 Pin9	All LBs	11			
12	HDLC2	FCC3 Pin11	All LBs	12	/FH	FCC3 Pin8	All LBs
13	/TSB0	FCC3 Pin13	All LBs	13			
14				14			
15	GND			15	GND		
16	TXHW[12 – 24]	FCC1	See the EXPU FCC pin definition for the status of connection with FCC1.	16	RXHW[12 – 4]	FCC1	See the EXPU FCC pin definition for the status of connection with FCC1.
17				17			
19				19			
20	8MCK	FCC3 Pin2	FCC3 to All LBs	20	SP8M	FCC3 Pin3	FCC3 to All LBs 8M Sync Pulse
21				21	HDLCCLK	FCC3 Pin12	FCC3 to All LBs HDLC Clock
22	GND		All LBs	22	GND		All LBs
23				23			
24	PBS4	FCC1 Pin23	All LBs	24	PBS5	FCC1 Pin24	All LBs
25	GND	PBS0	0	25	GND	PBS1	0
26	GND	PBS2	0	26	GND	PBS3	0
27	PB0	FCC3 Pin14	All LBs	27	PB1	FCC3 Pin15	All LBs
28	PB2	FCC3 Pin16	All LBs	28	PB3	FCC3 Pin17	All LBs
29	PB4	FCC3 Pin18	All LBs	29	PB5	FCC3 Pin19	All LBs
30	PB6	FCC3 Pin20	All LBs	30	PB7	FCC3 Pin21	All LBs
31	PB8	FCC3 Pin22	All LBs(Reserved)	31	CLK3M	FCC3 Pin23	All LBs
32	/EXMCCL	FCC3	All LBs(Reserved)	32	EX3MCK	FCC3	All LBs(Reserved)
33				33			
34			A11.1 D	34	0 0		AWAR
35	Sync A		All LBs	35	Sync B		All LBs
36	Sync CTRL		All LBs	36	/MAJALARM	FCC3 Pin 6	ALL LBs
37	5) (37	5)/		
38	-5V			38	-5V		
39	40)/	Dawer DC/DC	All I Do	39	40\/	Davies DO/DO	All I Do
40	-48V	Power DC/DC	All LBs	40	-48V	Power DC/DC	All LBs
41	-48V	Power DC/DC	All LBs	41	-48V	Power DC/DC	All LBs
42	DINC	PCII.	All I Bo	42	DINC	PCII	All I Po
43 44	RING	RGU	All LBs	43 44	RING	RGU	All LBs
44	FGND		All LBs	44	FGND		All LBs
45 46	FGIND		All LDS	46	FUND		All LDS
46	LGND		All LBs	46	LGND		All LBs
48	LGND		All LBs	48	LGND		All LBs
49	GND		All LBs	49	GND		All LBs
50	GND		All LBs	50	GND		All LBs

 $^{^3}$ Из 12 платомест LB, имеющихся на EMB, LB1 и LB2 поддерживают 16 абонентов, а LB3-12 поддерживают 32 абонента. /Е сигналы указывают, что абонент подключен к LB1,2 (/E10) и LB3 – 12 (/E11 - /E20), таким образом, LB 1 и LB 2 используют один и тот же /Е сигнал, а остальные LB пользуются своим собственным /Е сигналом..

5.15 EMB1: Назначение контактов FCC.

θ FCC 1.

№ контакта	FCC1 сторона В	№ контакта	FCC1 сторона A
1	RXHW12	1	GND
2	TXHW12	2	GND
3	RXHW13	3	GND
4	TXHW13	4	GND
5	RXHW14	5	GND
6	TXHW14	6	GND
7	RXHW15	7	GND
8	TXHW15	8	GND
9	RXHW16	9	GND
10	TXHW16	10	GND
11	RXHW17	11	GND
12	TXHW17	12	GND
13	RXHW20	13	GND
14	TXHW20	14	GND
15	RXHW21	15	GND
16	TXHW21	16	GND
17	RXHW22	17	GND
18	TXHW22	18	GND
19	RXHW23	19	GND
20	TXHW23	20	GND
21	RXHW24	21	GND
22	TXHW24	22	GND
23	(/E1PBS4)	23	GND
24	GND	24	GND
25	/FCC1 INJ	25	GND

θ FCC2.

·			
№ контакта	FCC2 сторона В	№ контакта	FCC2 сторона A
1	/E10	1	GND
2	/E11	2	GND
3	/E12	3	GND
4	/E13	4	GND
5	/E14	5	GND
6	/E15	6	GND
7	/E16	7	GND
8	/E17	8	GND
9	/E18	9	GND
10	/E19	10	GND
11	/E20	11	GND
12	E1RING0_INJ	12	GND
13	E1RING1_INJ	13	GND
14	E1RG0_FAIL	14	GND
15	E1RG1_FAIL	15	GND
16	E1DC0_INJ	16	GND
17	E1DC1_INJ	17	GND
18	E1PWR_ID	18	GND
19	E1AC_FAIL	19	GND
20	E154V0_FAIL	20	GND
21	E154V1_FAIL	21	GND
22	E15V0_FAIL	22	GND
23	E15V1_FAIL	23	GND
24	/TREC1	24	GND
25	/FCC2_INJ	25	GND

θ FCC 3.

№ контакта	FCC 3 сторона В	№ контакта	FCC 3 сторона A
1	/CNCL	1	GND
2	8MCK	2	GND
3	SP8M	3	GND
4	4MCK	4	GND
5	2MCK	5	GND
6	/MAJALARM	6	GND
7	EX3MCK(Rev)	7	GND
8	/FH	8	GND
9	HDLC0	9	GND
10	HDLC1	10	GND
11	HDLC2	11	GND
12	HDLCCLK	12	GND
13	/TSB0	13	GND
14	PB0	14	GND
15	PB1	15	GND
16	PB2	16	GND
17	PB3	17	GND
18	BP4	18	GND
19	PB5	19	GND
20	PB6	20	GND
21	PB7	21	GND
22	PB8	22	GND
23	CLK3M	23	GND
24		24	GND
25	/FCC3_INJ	25	GND

5.16 EMB2: LB1 – LB 12 назначение сигналов.

Α	Сигнал	Провод к РСВ	Примечание	В	Сигнал	Провод к РСВ	Примечание
1	+5V		All LB	1	+5V		All LB
2	+5V		All LB	2	+5V		All LB
3	2MCK	FCC3 Pin5	All LB	3	/CNCL	FCC3 Pin 1	All LB
4	4MCK	FCC3 Pin4	All LB	4	/E ⁴ Signals	FCC2 Pin[1 –10]	See notes for details. See the EXPU FCC pin definition for the status of connection with FCC1.
5				5			
7				7			
8	/TREC2	FCC2 Pin22	All LBs	8			
9	LIDLOTY	F000 Pi=40	AH I D-	9	DDD	DOLIO 4 DO	AH I D-
10	HDLCTX	FCC3 Pin10	All LBs	10	PRD	PSU0,1 B8 RGU0,1 B8	All LBs
11	HDLCRX	FCC3 Pin9	All LBs	11			
12	HDLC2	FCC3 Pin11	All LBs	12	/FH	FCC3 Pin8	All LBs
13	/TSB0	FCC3 Pin13	All LBs	13			
14	OND			14	OND		
15 16	GND TXHW	FCC1	Can the EVDII FCC nin	15 16	GND	FCC1	Con the EVDII ECC nin
16	[25 – 37]	FCC1	See the EXPU FCC pin definition for the status of connection with FCC1.	16	RXHW [25 – 37]	FCC1	See the EXPU FCC pin definition for the status of connection with FCC1.
17				17			
19				19			
20	8MCK	FCC3 Pin2	FCC3 to All LBs	20	SP8M	FCC3 Pin3	FCC3 to All LBs 8M Sync Pulse
21				21	HDLCCLK	FCC3 Pin12	FCC3 to All LBs HDLC Clock
22	GND		All LBs	22	GND		All LBs
23				23			
24	PBS4	FCC1 Pin23	All LBs	24	PBS5	FCC1 Pin24	All LBs
25	GND	PBS0	0	25	GND	PBS1	0
26	GND	PBS2	0	26	GND	PBS3	0
27 28	PB0 PB2	FCC3 Pin14 FCC3 Pin16	All LBs All LBs	27 28	PB1 PB3	FCC3 Pin15 FCC3 Pin17	All LBs All LBs
29	PB4	FCC3 Pin18	All LBs	29	PB5	FCC3 Pin19	All LBs
30	PB6	FCC3 Pin20	All LBs	30	PB7	FCC3 Pin19	All LBs
31	PB8	FCC3 Pin22	All LBs(Reserved)	31	CLK3M	FCC3 Pin23	All LBs
32	/EXMCC	FCC3	All LBs(Reserved)	32	EX3MCK	FCC3	All LBs(Reserved)
	L	. 555	/ III 225((1005)100)			. 555	, III 235(1.16551764)
33 34				33 34			
35	Sync A		All LBs	35	Sync B		All LBs
36	Sync		All LBs	36	/MAJALARM	FCC3 Pin 6	ALL LBs
37	CTRL		All LD3	37	HINDALARW	1 0031 111 0	ALL LDS
38	-5V			38	-5V		
39	-5V			39	-50		
40	-48V	Power DC/DC	All LBs	40	-48V	Power DC/DC	All LBs
41	-48V	Power DC/DC	All LBs	41	-48V	Power DC/DC	All LBs
42		1 01101 20120	7.11. 2.50	42	.01	. 0.10. 20/20	7 250
43	RING	RGU	All LBs	43	RING	RGU	All LBs
44				44			
45	FGND		All LBs	45	FGND		All LBs
46				46			
47	LGND		All LBs	47	LGND		All LBs
48	LGND		All LBs	48	LGND		All LBs
49	GND		All LBs	49	GND		All LBs
50	GND		All LBs	50	GND		All LBs

⁴ Из 12 платомест LB, имеющихся на EMB, LB1 и LB2 поддерживают 16 абонентов, а LB3-12 поддерживают 32 абонента. /Е сигналы указывают, что абонент подключен к LB1,2 (/E10) и LB3 – 12 (/E11 - /E20), таким образом, LB 1 и LB 2 используют один и тот же /Е сигнал, а остальные LB пользуются своим собственным /Е сигналом..

5.17 EMB2: PSU0 назначение контактов (PSU-A/PSU-D0: верхняя сторона).

Α	Сигнал	Примечание	В	Сигнал	Примечание
1			1		
2	+5V	Wire to EMB	2		Wire to EMB (1A, 1B, 2A, 2B)
3			3	+5V	
4		(1A, 1B, 2A, 2B)	4		
5			5		
6			6		
7	DC0_INJ	Wire to FCC2 Pin16	7	PWR_ID	Wire to FCC2 Pin18
8	RG0_FAIL	Wire to FCC2 Pin14	8	PRD	Wire to EMB 10B
9	AC_FAIL	Wire to FCC2 Pin19	9	54V0_FAIL	Wire to FCC2 Pin20
10	5V0_FAIL	Wire to FCC2 Pin22	10	-5V	Wire to EMB (38A, 38B)
11			11		
12			12		
13		Wire to EMB (40A, 40B, 41A, 41B)	13	-54V	Wire to EMB (40A, 40B, 41A, 41B)
14	-54V		14		
15			15		
16			16		
17			17		
18	RING	Wire to EMB /EMB (43A, 43B)	18	RING	Wire to EMB /EMB(43A, 43B)
19			19		
20			20		
21		Wire to EMB	21		Wire to EMB
22	LGND	(47A, 47B, 48A, 48B)	22	LGND	(47A, 47B, 48A, 48B)
23		(1171, 112, 1671, 162)	23		(, =,,)
24			24		
25			25		
26	3		26		Wire to EMB
27	GND	Wire to EMB (15A, 15B, 49A, 49B, 50A, 50B)	27	GND	(15A, 15B, 49A, 49B, 50A, 50B)
28			28		
29			29		
30			30		

5.18 EMB2: PSU1 назначение контактов (PSU-A/PSU-D1: нижняя сторона).

Α	Сигнал	Примечание	В	Сигнал	Примечание
1	+5V	Wire to EMB (1A, 1B, 2A, 2B)	1	+5V	Wire to EMB (1A, 1B, 2A, 2B)
2			2		
3			3		
4			4		
5			5		
6			6		
7	DC1_INJ	Wire to FCC2 Pin17	7	PWR_ID	Wire to FCC2 Pin18
8	RG1_FAIL	Wire to FCC2 Pin15	8	PRD	Wire to EMB 10B
9	AC_FAIL	Wire to FCC2 Pin19	9	54V1_FAIL	Wire to FCC2 Pin21
10	5V1_FAIL	Wire to FCC2 Pin23	10	-5V	Wire to EMB (38A, 38B)
11			11		
12	-54V	Wire to EMB	12	-54V	Wire to EMB
13		(40A, 40B, 41A, 41B)	13		(40A, 40B, 41A, 41B)
14			14		
15			15		
16			16		
17			17		
18	RING	Wire to EMB /EMB (43A, 43B)	18	RING	Wire to EMB /EMB(43A, 43B)
19			19		
20	LGND	Wire to EMB	20	LGND	Wire to EMB
21		(47A, 47B, 48A, 48B)	21		(47A, 47B, 48A, 48B)
22			22		
23			23		
24			24		
25	GND	Wire to EMB	25	GND	Wire to EMB
26		(15A, 15B, 49A, 49B, 50A, 50B)	26		(15A, 15B, 49A, 49B, 50A, 50B)
27			27		
28			28		
29			29		
30			30		

5.19 EMB2: RGU0 назначение контактов (верхняя сторона).

Α	Сигнал	Примечание	В	Сигнал	Примечание
1	+5V	Wire to EMB	1	+5V	Wire to EMB
2		(1A, 1B, 2A, 2B)	2		(1A, 1B, 2A, 2B)
3			3		
4			4		
5			5		
6			6		
7					
8	RGOA	(RTX0) Wire to RGU1 RRX	8	RGOB	(RRX0) Wire to RGU1 RTX
9	RG0_FAIL	Wire to FCC2 Pin14	9	PRD	Wire to EMB 10B
10	RG0_INJ	Wire to FCC2 Pin12	10		
11			11		
12	-54V	Wire to EMB	12	-54V	Wire to EMB
13		(40A, 40B, 41A, 41B)	13		(40A, 40B, 41A, 41B)
14			14		
15			15		
16			16		
17			17		
18	RING	Wire to EMB /EMB(43A, 43B)	18	RING	Wire to EMB /EMB (43A, 43B)
19			19		
20	LGND	Wire to EMB	20	LGND	Wire to EMB
21		(47A, 47B, 48A, 48B)	21		(47A, 47B, 48A, 48B)
22			22		
23			23		
24			24		
25	GND	Wire to EMB	25	GND	Wire to EMB
26		(15A, 15B, 49A, 49B, 50A, 50B)	26		(15A, 15B, 49A, 49B, 50A, 50B)
27			27		
28			28		
29			29		
30			30		

5.20 EMB2: RGU1 назначение контактов (нижняя сторона).

Α	Сигнал	Примечание	В	Сигнал	Примечание
1	+5V	Wire to EMB 1 +5V (1A, 1B, 2A, 2B) 2 3 4	+5V	Wire to EMB	
2			2		(1A, 1B, 2A, 2B)
3			3		
4			4		
5			5		
6			6		
7					
8	RGOB	(RTX1) Wire to RGU0 RRX	8	RGOA	(RRX1) Wire to RGU0 RTX
9	RG1_FAIL	Wire to FCC2 Pin15	9	PRD	Wire to EMB 10B
10	RG1_INJ	Wire to FCC2 Pin13	10		
11			11		
12	-54V	Wire to EMB (40A, 40B, 41A, 41B)	12	-54V	Wire to EMB
13			13		(40A, 40B, 41A, 41B)
14			14		
15			15		
16			16		
17			17		
18	RING	Wire to EMB /EMB(43A, 43B)	18	RING	Wire to EMB /EMB(43A, 43B)
19			19		
20	LGND	Wire to EMB	20	LGND	Wire to EMB
21		(47A, 47B, 48A, 48B)	21		(47A, 47B, 48A, 48B)
22			22		
23			23		
24			24		
25	GND	Wire to EMB	25	GND	Wire to EMB
26		(15A, 15B, 49A, 49B, 50A, 50B)	26		(15A, 15B, 49A, 49B, 50A, 50B)
27		300)	27		
28			28		
29			29		
30			30		

Учрежденческо-производственная АТС

STAREX-CS

5.21 EMB2: назначение контактов FCC.

θ FCC 1.

№ контакта	FCC 1 сторона В	№ контакта.	FCC 1 сторона A
1	RXHW25	1	GND
2	TXHW25	2	GND
3	RXHW26	3	GND
4	TXHW26	4	GND
5	RXHW27	5	GND
6	TXHW27	6	GND
7	RXHW30	7	GND
8	TXHW30	8	GND
9	RXHW31	9	GND
10	TXHW31	10	GND
11	RXHW32	11	GND
12	TXHW32	12	GND
13	RXHW33	13	GND
14	TXHW33	14	GND
15	RXHW34	15	GND
16	TXHW34	16	GND
17	RXHW35	17	GND
18	TXHW35	18	GND
19	RXHW36	19	GND
20	TXHW36	20	GND
21	RXHW37	21	GND
22	TXHW37	22	GND
23	(/E2PBS4)	23	GND
24	GND	24	GND
25	/FCC4_INJ	25	GND

θ FCC2.

№ контакта	FCC 2 сторона В	№ контакта.	FCC 2 сторона A
1	/E21	1	GND
2	/E22	2	GND
3	/E23	3	GND
4	/E24	4	GND
5	/E25	5	GND
6	/E26	6	GND
7	/E27	7	GND
8	/E28	8	GND
9	/E29	9	GND
10	/E30	10	GND
11	/E31	11	GND
12	E2RING0_INJ	12	GND
13	E2RING1_INJ	13	GND
14	E2RG0_FAIL	14	GND
15	E2RG1_FAIL	15	GND
16	E2DC0_INJ	16	GND
17	E2DC1_INJ	17	GND
18	E2PWR_ID	18	GND
19	E2AC_FAIL	19	GND
20	E254V0_FAIL	20	GND
21	E254V1_FAIL	21	GND
22	E25V0_FAIL	22	GND
23	E25V1_FAIL	23	GND
24	/TREC2	24	GND
25	/FCC5_INJ	25	GND

θ

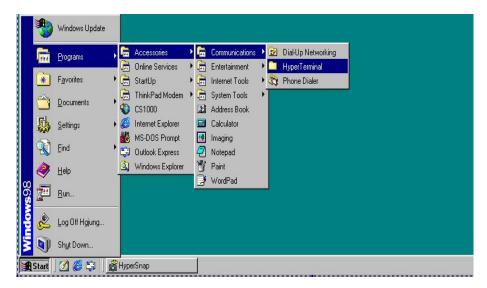
θ FCC 3.

№ контакта	FCC 3 сторона В	№ контакта.	FCC 3 сторона A
1	/CNCL	1	GND
2	8MCK	2	GND
3	SP8M	3	GND
4	4MCK	4	GND
5	2MCK	5	GND
6	/MAJALARM	6	GND
7	EX3MCK	7	GND
8	/FH	8	GND
9	HDLC0	9	GND
10	HDLC1	10	GND
11	HDLC2	11	GND
12	PBCLK	12	GND
13	/TSB0	13	GND
14	PB0	14	GND
15	PB1	15	GND
16	PB2	16	GND
17	PB3	17	GND
18	BP4	18	GND
19	PB5	19	GND
20	PB6	20	GND
21	PB7	21	GND
22	PB8	22	GND
23	CLK3M	23	GND
24		24	GND
25	/FCC3_INJ	25	GND

5.22 Назначение портов.

Nº							Характери-
	№ слота	№ порта	Nº HW	Тип HW	Nº T/S	№ PB	
системы	0.014	v		T)/00			стика порта
	CPM	X	0	TX00	0	-	Melody (1)
	CPM	X	0	TX00	1-15	-	Tone(15)
	CPM	X	0	TX00	16-31	-	DTMF x(16)
	CPM	X	0	RX00	0-31	-	DTMF x(32)
	LB1	0-15	1	T / RX01	0-15	00 0010	16
	LB2	16-31	1	T / RX01	16-31	00 0011	16
MMB	LB3	32-63	2	T / RX02	0-31	00 0110	32
	LB4	64-95	3	T / RX03	0-31	00 0101	32
	LB5	96-127	4	T / RX04	0-31	00 0110	32
	LB6	128-159	5	T / RX05	0-31	00 0111	32
	LB7	160-191	6	T / RX06	0-31	00 1000	32
	LB8	192-223	7	T / RX07	0-31	00 1001	32
	LB9	224-255	8	T / RX10	0-31	00 1010	32
	LB10	256-287	9	T / RX11	0-31	00 1011	32
	LB1	288-303	10	T / RX12	0-15	01 0000	16
	LB2	304-319	10	T / RX12	16-31	01 0001	16
	LB3	320-351	11	T / RX13	0-31	01 0010	32
	LB4	352-383	12	T / RX14	0-31	01 0011	32
	LB5	384-415	13	T / RX15	0-31	01 0100	32
EMB1	LB6	416-447	14	T / RX16	0-31	01 0101	32
LIVID I	LB7	448-479	15	T / RX17	0-31	01 0110	32
	LB8	480-511	16	T / RX20	0-31	01 0111	32
	LB9	512-543	17	T / RX21	0-31	01 1000	32
	LB10	544-575	18	T / RX22	0-31	01 1001	32
	LB11	576-607	19	T / RX23	0-31	01 1010	32
	LB12	608-639	20	T / RX24	0-31	01 1011	32
	LB1	640-655	21	T / RX25	0-15	10 0000	16
	LB2	656-671	21	T / RX25	16-31	10 0001	16
	LB3	672-703	22	T / RX26	0-31	10 0010	32
	LB4	704-735	23	T / RX27	0-31	10 0011	32
	LB5	736-767	24	T / RX30	0-31	10 0100	32
EMDO	LB6	768-799	25	T / RX31	0-31	10 0101	32
EMB2	LB7	800-831	26	T / RX32	0-31	10 0110	32
	LB8	832-863	27	T / RX33	0-31	10 0111	32
	LB9	864-895	28	T / RX34	0-31	10 1000	32
	LB10	896-927	29	T / RX35	0-31	10 1001	32
	LB11	928-959	30	T / RX36	0-31	10 1010	32
	LB12	960-991	31	T / RX37	0-31	10 1011	32

6. Инсталляция программы.


6.1 Общие сведения.

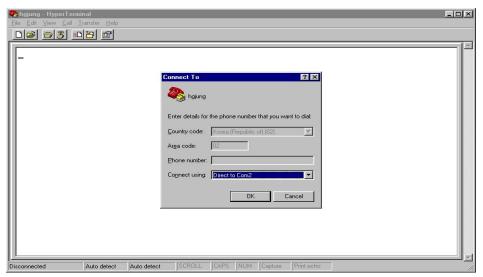
Инсталляция программы управления системой происходит в несколько этапов. В данном разделе описаны рекомендуемые этапы инсталляции. Вы должны выполнить все процедуры, предусмотренные для каждого из описанных этапов инсталляции программы.


6.2 Первоначальный этап инсталляции программы.

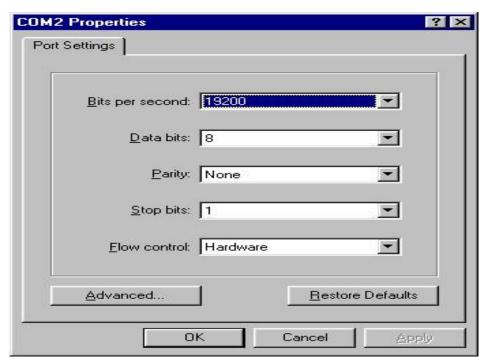
Основным управляющим модулем системы STAREX-CS является СРМ. Таким образом, суть инсталляции программы управления системой заключается в записи программы в память (флэш диск) СРМ. Для записи программы управления системой в СРМ, эти данные необходимо передать с персонального компьютера. В рассматриваемой процедуре инсталляции программы управления системой предполагается, что компьютер передает данные через LAN.

- ө Подключение к порту CRT:
 - Система STAREX-CS использует порт IOT1 CRT. Этот порт оснащен разъемом типа RS-232C и поддерживает скорость обмена данными до 19200 bps. Для соединения с портом CRT используются программы операционной системы Windows 95/98, например программа «Hyper Terminal».
- 6 Программа «Hyper terminal». Нажмите кнопку [Start] в Windows 95/98, поочередно выберите пункты [Program], [Auxiliary Program] и [Communication], и кликните [Hyper Terminal] для запуска программы Hyper Terminal. Для ознакомления с работой программы Hyper Terminal, выберите пункт [Help] из меню программы Hyper Terminal.

Запуск программы HyperTerminal.


Программа HyperTerminal.

Для установки нового соединения, выберите пункт [New Connection] из меню [File]. При первоначальной инсталляции программы введите имя нового соединения, выберите понравившуюся вам иконку и нажмите [OK]. После этого введите информацию о соединении и еще раз нажмите [OK].


Работа с программой HyperTerminal.

Кликните [New Connection] в меню [File]. Введите имя подключения, выберите иконку и нажмите [OK].

Работа с программой HyperTerminal.

Следующим шагом, выберите используемый порт. Как правило, нужно выбрать [Direct Connection to COM2] для соединения с помощью модема и нажать [OK].

Работа с программой HyperTerminal.

Введите регистрационную информацию, как показано выше и нажмите [OK]. За справками обращайтесь к разделу "Help" программы Hyper Terminal.

6.3 Процедура входа в систему.

Для инсталляции программы управления системой, нужно выполнить процедуру входа в систему. Если включить электропитание системы или сбросить плату СРМ, при правильно подключенной SIO к CRT, на экране компьютера начнут появляться следующие данные:

```
STAROS2 Version 3.00
Date: 2000-02-29, Time: 22: 28: 45
01100000(HEX) Real memory
01087b08(HEX) Base address
000784f8(HEX) Avail memory
Initialization finished.
Xmain task start.
Netstart: starting IP
Netstart: starting TCP
Netstart: starting RIP
Netstart: starting fingerd
Netstart: starting tcp echo
Netstart: starting udp echo
Netstart: starting udp discard
Netstart: starting tftp server
Netstart: starting telnetd server
Netstart: starting ftpd server
[LOAD] This program is running on PROM.
System Starts after 5 seconds
Type ^Z to invoke Monitor.
^1
[LOAD] loading.....
[LOAD] loading finished - total 2558308 byte!!
STAROS2 Version 3.00
Date: 2000-02-29, Time: 22:29:11
01ff0000(HEX) Real memory
01635848(HEX) Base address
```

```
009ba7b8(HEX) Avail memory
Initialization finished.
xmain task start.
netstart: starting IP
netstart: starting TCP
netstart: starting RIP
netstart: starting fingerd
netstart: starting tcp echo
netstart: starting udp echo
netstart: starting udp discard
netstart: starting tftp server
netstart: starting telnetd server
netstart: starting ftpd server
[LOAD] This program is running on DRAM.
[CONFIG] file not found - config.sys
CALL INIT : START !!!
CALL INIT : CALL SRAM
CALL INIT : Null Data
CALL INIT : CALL DRAM
CALL INIT : Create FET SeedFile
CALL INIT : Digit Anal
CALL INIT : Switching
CALL INIT : Tel_No Sort
CALL INIT : Timer
CALL INIT : Start Call Main
CALL INIT : END !!!
[RMS Deamon] accepting
[CTI Deamon] accepting
[ACD Deamon] accepting
DIAG TASK START
```

При появлении последней строчки, нажмите на клавиатуре клавишу [Enter], после

чего появится экран входа в систему "Login".

(Login and Password) для входа в систему.

Введите Login ID (имя пользователя): cs1000 и Password ID (пароль): super-a. Обратите внимание, что используются маленькие (строчные) буквы.

```
Login: cs1000
Password: *****
    Welcome to CS1000 (type ? for help)
$
$dir
Volume in drive DiskOnChip has no label
Volume Serial Number is none
Directory of DiskOnChip:\
             2558308 02-29-2000 22:28:18
cpm.img
            100001602-29-2000 22:29:17
pmstx.dq
fault.dq 2416 U2-22 200

fund dt 418129 02-29-2000 22:29:30
dconf.dt
                2096 02-29-2000 22:29:23
      5 file(s) 3980965 bytes
       0 dir(s) 4139008 bytes free
$
```

в В системе загружены и используются следующие файлы:

Имя файла	Описание	Примечание
cpm.img	Программа управления системой	
pmstx.dq	Файл тарификации	Для хранения тарификационной информации и данных PMS.
fault.dq	Файл сбора сообщений об ошибках	Для хранения данных об ошибках
func.dt	Файл сведений о пользователях	Например: DND
dconf.dt	Файл сведений о конфигурации системы	Например: сетевая синхронизация
cs1000.dt	Файл генерации данных	Для хранения плана нумерации

Примечание: Размеры файлов в вашей версии программы могут отличаться от указанных в примере.

6.4 Ввод информации о конфигурации LAN.

Перечисленная ниже информация требуется для нормальной работы системной LAN. Mac Address — это 6-байтная информация, используемая в качестве идентификатора различных устройств в локальной сети. Эта информация указывается на ярлыке, который прикрепляется к задней стенке PCB главной стойки системы при доставке оборудования.

Параметры сети при первоначальной установке СРМ, следующие:

MAC ADDRESS	Адрес указан на ярлыке на задней стенке РСВ.
IP ADDRESS	156.147.249.183
SUBNET MASK	255.255.255.0
GATEWAY	156.147.249.254

Примечание: Поскольку информация о настойках сети хранится в СРМ на полупостоянной основе, убедитесь, что вы сверили эту информацию при замене СРМ.

Для получения информации о настройках сети, обратитесь к менеджеру сети. В случае его отсутствия, необходимая информация должна быть введена самостоятельно. Так как DNS, EMS, и RMHOST в основном в работе не используются, установите в качестве параметров по умолчанию значения 255.255.255.255.

```
$ netcfg -d Network information query
mac address
            : 00-01-65-34-85-27
ip address
             : 165.243.141.215
             : 255.255.255.0
subnet mask
gateway
             : 165.243.141.254
             : 255.255.255.255
             : 255.255.255.255
ems
             : 255.255.255.255
rmhost
$ netcfg -c
                     Network information change
mac address [00-01-65-34-85-27] : 00-5a-12-34-6f-4e
ip address
             [165.243.141.215]
                                  : 165.243.141.213
subnet mask [255.255.255.0]:
gateway
             [165.243.141.254]
             [255.255.255.255]
dns
             [255.255.255.255]
ems
            [255.255.255.255]
rmhost
$
$ netcfg -d
                     Network information check
mac address
            : 00-5a-12-34-6f-4e
ip address
             : 165.243.141.213
             : 255.255.255.0
subnet mask
             : 165.243.141.254
gateway
             : 255.255.255.255
dns
             : 255.255.255.255
ems
rmhost
             : 255.255.255.255
```

Для проверки правильности ввода информации, следует сбросить плату СРМ.

θ Установка времени.

Поскольку в памяти СРМ находится файловая система, которая записывает время генерации каждого файла, первым делом нужно установить правильное системное время. Ниже приведен пример диалога по установке системного времени.

```
$ ti

2000/03/02 14:08:00:0 FRI

type YYYY/MM/DD HH:MM:SS:M WEEKDAY

$ ti 2000/03/02 15:00:00:0 FRI

$ ti

2000/03/02 15:00:00:0 FRI

type YYYY/MM/DD HH:MM:SS:M WEEKDAY

$
```

После установки времени необходимо проверить правильность его установки.

Примечание: Информация о системном времени храниться в СРМ на полупостоянной основе.

ө Удаление существующих файлов.

При первоначальной инсталляции программы, удалите существующие ненужные файлы:

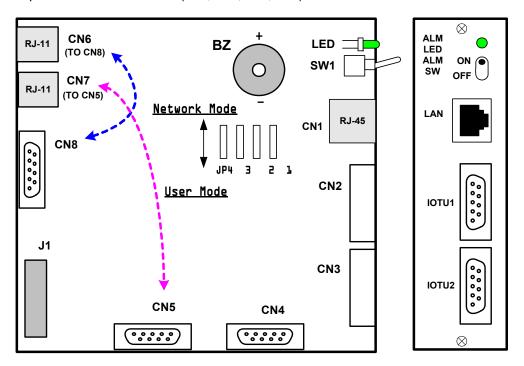
```
$del pmstx.dq
$del fault.dq
$del func.dt
$del dconf.dt
$
```

А затем регенерируйте эти файлы, перезагрузив для этого систему или сбросив плату СРМ.

Для сброса платы CPM, нажмите на кнопку «reset», расположенную на передней панели платы CPM.

При регенерации файлов на экране отображается следующая информация:

```
[DISKQ] create disk queue - pmstx.dq
[DISKQ] create disk queue - fault.dq
Login: cs1000
Password: ******
   Welcome to CS1000 (type ? for help)
$
$dir
Volume in drive DiskOnChip has no label
Volume Serial Number is none
Directory of DiskOnChip:\
          2558308 02-29-2000 22:28:18
cpm.img
              100001603-02-2000 22:29:17
pmstx.dq
fault.dq
               2416 03-02-2000 22:29:24
fault.dq 2416 03-02-2000 22:29:24
func.dt 418129 03-02-2000 22:29:30
dconf.dt
                2096 03-02-2000 22:29:23
      5 file(s) 3980965 bytes
       0 dir(s) 4139008 bytes free
```


После перезагрузки системы, проверьте установленную конфигурацию сети (команда 'netcfg –d') и установленное время (команда 'ti').

(репитера).

6.5 Установка режима работы сети (установка перемычек).

Система STAREX-CS поддерживает два варианта соединения с сетью: 1:1 и 1:N. В варианте 1:1 (режим пользователя) к системе подключается только OMS PC, а в варианте 1:N (режим сети) поддерживается соединение с системой сразу нескольких пользователей с помощью сетевого оборудования, например, HUB

Режим работы с сетью устанавливается путем установки соответствующих перемычек на плате IOTU (JP1, JP2, JP3, JP4).

Плата IOTU – вид спереди.

Примечание: Ознакомьтесь с диаграммой подключения кабелей LAN, приведенной в руководстве по установке системы.

6.6 Проверка информации о конфигурации сети в РС.

Для установки сети PC, обратитесь к 'Руководству по установке OMS'. Для того чтобы узнать конфигурацию TCP/IP вашего компьютера, запустите программу c:\windows\winipcfg.exe и сверьте IP адрес компьютера и маску подсети.

Конфигурация ІР (интернет протокола).

θ Проверка состояния сети.

Для проверки нормальной работоспособности сети используется тестовая программа Ping. Этот тест пересылает пакеты ICMP по IP адресу PC в системе и возвращает ответный сигнал (эхо). Работоспособность системы может быть проверена точно таким же способом. В случае отсутствия обратного сигнала (эхо), проверьте правильность конфигурации сети. Если данные о конфигурации сети правильные, следует проверить исправность оборудования.

На следующем экране показано выполнение теста Ping с помощью компьютера.

```
MS-DOS Prompt

Auto

C:\>ping 165.243.141.218

Pinging 165.243.141.218 with 32 bytes of data:

Reply from 165.243.141.218: bytes=32 time=4ms ITL=29

Reply from 165.243.141.218: bytes=32 time=4ms ITL=29

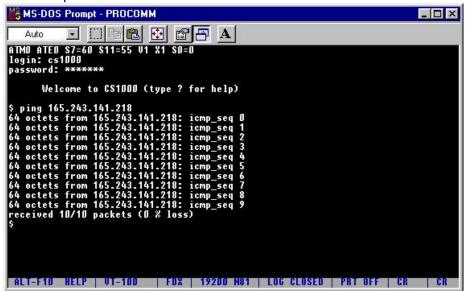
Reply from 165.243.141.218: bytes=32 time=5ms ITL=29

Reply from 165.243.141.218: bytes=32 time=4ms ITL=29

Ping statistics for 165.243.141.218:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:


Minimum = 4ms, Maximum = 5ms, Average = 4ms

C:\>
```

Работа в режиме эмуляции MS-DOS.

На следующем экране показано выполнение теста Ping системы, подключенной через плату ввода/вывода (SIO).

После входа в систему, тест Ping выполняется с указанием IP адреса вашего компьютера.

Работа в режиме эмуляции MS-DOS.

6.7 Установка более новой версии программы.

В данном разделе описана процедура замены файла CPM.IMG, основной программы системы STAREX-CS, с использованием LAN.

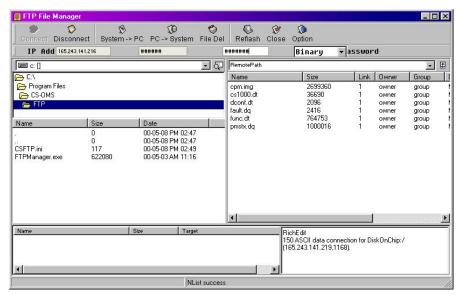
- в Изменение названия файла.
 - Скопируйте файл СРМ.ІМС на компьютер.
 - Измените имя фала CPM.IMG. (например, на CPM.BIN).
- θ Использования OMS FTP: в режиме ON-LINE.

Этот метод используется для установки более новой версии программы при нормально работающей системе. Он может использоваться для пересылки программ и других файлов (файлов данных).

OMS FTP может использоваться только на компьютере, где установлена OMS. Поэтому в первую очередь установите OMS на этот компьютер.

(См. Руководство по установке OMS).

Запустите программу OMS, после чего на экране появится главное меню программы.


Главное меню программы OMS.

После этого, кликните на иконку, на которую указывает стрелка, в результате чего запустится программа FTP. Процедура передачи информации осуществляется следующим образом:

- Введите IP адрес, ID (cs1000) и Password (super-a).
- Кликните на кнопку 'Connection'. При установлении соединения по протоколу FTP, в правой части экрана появится список системных файлов.

Учрежденческо-производственная АТС

STAREX-CS

FTP файл-менеджер.

- С экрана информации о системе удалите все файлы с именами типа СРМ.ІМ_.
 - Отметьте файл типа СРМ.ІМ на системном экране.
 - Кликните на кнопку [File delete].
 - ▶ Кликните на кнопку 'YES' на экране подтверждения удаления файла [Delete].
- Отметьте файл CPM.BIN на экране информации о компьютере.
- Кликните на кнопку 'Send files'. (См. Руководство по установке OMS.)
 - ▶ Кликните на кнопку [YES] на экране подтверждения пересылки файлов 'Send files'.
 - После этого на экране появится окошко состояния передачи файлов. По окончании передачи файлов, это окошко исчезнет.
- После успешного окончания процедуры передачи данных, переименуйте файл СРМ.ІМG, перенесенный в систему, в СРМ.ІМ_.
 - Отметьте файл CPM.IMG на экране информации о системе и кликните на нем правой кнопкой мышки.
 - ➤ Кликните кнопку [RENAME].
 - ➤ Введите новое имя 'CPM.IM_' в меню [change files] и кликните кнопку [OK].
- Переименуйте файл CPM.BIN в CPM.IMG.
 - Отметьте файл CPM.BIN IMG на экране информации о системе и кликните на нем правой кнопкой.
 - ➤ Кликните кнопку [RENAME].
 - ▶ Введите новое имя 'СРМ.ІМО' в меню [Changed file] и кликните кнопку [ОК].
- Кликните кнопку [Connection end] и завершите сеанс FTP.

• Перезагрузите плату СРМ.

6.8 Использование программы FTP DOS: режим OFF-LINE.

Этот метод используется для передачи данных и программ в случае ненормального функционирования системы или после форматирования диска системы.

Примечание: После передачи файлов с использованием программы FTP DOS в условиях нормальной работы системы, система автоматически будет перезагружена.

Независимо от программного обеспечения, установленного на компьютере, вы всегда можете использовать программу FTP DOS, входящую в состав операционной системы Windows 95/98/NT.

Во-первых, вам нужно перевести систему в режим OFF-LINE, как описывается ниже.

ө Перезагрузите СРМ.

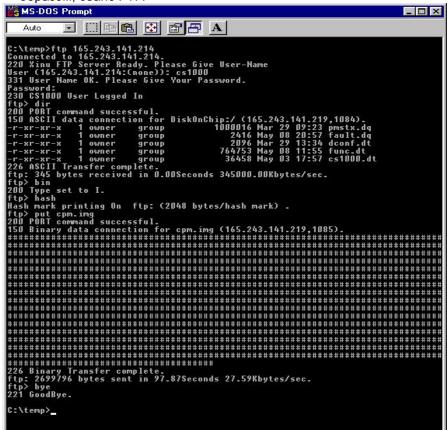
```
[LOAD] This program is running on PROM.
System Starts after 5 seconds
Type ^Z to invoke Monitor.
^5

[LOAD] Off-line mode

login: cs1000
password: ******

Welcome to CS1000 (type ? for help)
$
```

- При появлении сообщений о начале загрузке системы, в течение 5 секунд одновременно нажмите клавиши CTRL и Z.
- На экране должно появиться сообщение о переводе системы в режиме OFF-LINE ([LOAD] Off-line mode).
- Введите ID и Password.


Следующим шагом, выполните процедуру передачи файлов по протоколу FTP с использованием IP адреса:

- Переключите компьютер в режим эмуляции DOS.
- Перейдите в директорию, содержащую файлы для передачи на систему.

Учрежденческо-производственная АТС

STAREX-CS

- Введите: FTP + IP адрес системы, например: <u>FTP 165.243.141.217</u>.
- При установлении FTP связи с системой, введите Login ID системы.
- Введите Password.
- Считайте файлы системы с помощью команды 'dir'.
- Если есть файлы, подлежащие удалению, удалите их с помощью команды "del", например: del cs1000.dt.
- Введите команду 'bin'.
- Введите команду 'hash'.
- Введите команду 'put', а вслед за ней названия файла (файлов), которые вы хотите передать, например: put cs1000.dt.
- После завершения передачи файла, введите команду 'bye', завершив, таким образом, сеанс FTP.

Работа в режиме эмуляции MS-DOS.

6.9 Форматирование флэш-диска.

Для загрузки программы управления системой, СРМ должна иметь возможность управления флэш-диском. Если на флэш-диск невозможно записать какую-либо информацию, и с него невозможно считать что-либо, это означает, что диск не отформатирован. Однако, поскольку форматирование флэш-диска и инсталляция программы управления системой выполняются производителем оборудования, форматирование диска необязательно, за исключением случаев повторной инсталляции программы.

Примечание: Имейте в виду, что при форматировании вся информация, содержавшаяся на флэш-диске, уничтожается.

Процедура форматирования флэш-диска отображена на следующем экране.

```
$
$ format ds0:
Formatting...
OK
WARN : system will be restarted!!
```

После завершения процедуры форматирования, система автоматически перезагружается.

В этом случае, поскольку какие-либо программы отсутствуют на диске системы, запустите систему в режиме OFF-LINE и перешлите на нее необходимые файлы (CPM.IMG, CS1000.DT, и т.д.) с помощью программы FTP DOS.

6.10 Перезагрузка системы и автоматическая генерация данных.

ө Перезагрузка системы.

Сразу после завершения процедуры передачи программы управления системой (СРМ.IMG), систему необходимо перезагрузить.

На следующем рисунке представлен экран перезагрузки системы. Для перезагрузки системы, нажмите кнопку «reset», расположенную на передней панели платы СРМ.

Для того чтобы удостовериться, что система перезагружена, убедитесь в том, что светодиод SW1 на передней панели CPM периодически мигает.

```
CALL INIT: START!!!

CALL INIT: CALL SRAM

CALL INIT: Null Data

CALL INIT: CALL DRAM

CALL INIT: Create FET SeedFile

CALL INIT: Digit Anal

CALL INIT: Switching

CALL INIT: Tel_No Sort

CALL INIT: Timer

CALL INIT: Start Call Main

CALL INIT: END!!!

[RMS Deamon] accepting

[CTI Deamon] accepting

[ACD Deamon] accepting

DIAG TASK START
```

θ Автоматическая генерация данных.

Система STAREX-CS поддерживает автоматическую генерацию данных в соответствии с установленными на ней платами. Таким образом, без выполнения каких-либо процедур, система генерирует данные на основании сведений об установленных в ней платах и позволяет осуществлять тестовые процедуры, с помощью которых можно удостовериться в том, что программа управления системой проинсталлирована успешно и работает нормально. На следующем экране показан пример автоматической генерации данных.

```
AutoGen Start!!! Shelf=0, Slot=2, Dev=11

END: APTC Start Pno=0020 AccCode=9fffff

AutoGen Start!!! Shelf=0, Slot=6, Dev= b

END: DSLC[LGP] !!! Start Pno=0080 Telno=2000ff

AutoGen Start!!! Shelf=0, Slot=8, Dev= b

END: DSLC[LKD-12] !!! Start Pno=00c0 Telno=2032ff

AutoGen Start!!! Shelf=0, Slot=9, Dev= 1

END: ASLC !!! Start Pno=00e0 Telno=1000ff

AutoGen Start!!! Shelf=0, Slot=a, Dev= 1

END: ASLC !!! Start Pno=0100 Telno=1032ff
```

В приведенной ниже таблице указывается план нумерации оборудования, вырабатываемый при автоматической генерации данных.

Наименование платы	Тип	План нумерации	Примечания
DSLC-LGP/LKD	Абонент	2XXX (2000~)	В том случае, если определенное
ASLC	Абонент	1XXX (1000 ~)	минимальное количество
BRI-S	Абонент	3XXX (3000~)	абонентских линий уже занято, для них не будет выполняться функция
VPM	Абонент	3XXX (3500~)	автоматической генерации данных.
APTC	Офисная линия	9	Более подробная информация
DNIC-DTC	Офисная линия	71	изложена в выходных данных CRT.
DNIC-PRI	Офисная линия	72	
BRI-T	Офисная линия	73	
ITGC	Офисная линия	74	
ALTC-LD	Офисная линия	81	
ALTC-EM	Офисная линия	82	
ALTC-RD	Офисная линия	83	

7. Спецификации и характеристики различного типа оборудования и сигналов.

7.1 Характеристики каждой платы.

θ Характеристики платы ASLC.

Характеристика	Спецификация	Результат теста
1. Симметрия линии	Болеее 46 dB	52 dB
2. Переходная помеха	< -68dBmO	< -75dBmO
3. Затухание отражения	300Hz : > 14dB 500 Hz : > 18dB 2000Hz : > 18dB 3400Hz : > 14dB	Более 24dВ
4. Измеренный сигнал.	A/D : 0dBm (±0.5 dBm) D/A : -5dBm (±0.5 dBm)	±0.25dBm ±0.25dBm
5. Изменение усиления сигнала в зависимости от частоты	300~400Hz : -0.8 ~ +0.5dB 400~600Hz : -0.5 ~+0.5dB 600~2400Hz : -0.3 ~+0.3dB 2400~3000Hz : -0.3 ~+0.3dB 3000~3400Hz : -0.8 ~+0.5dB	В норме
6. Изменение усиления сигнала в зависимости от амплитуды	+3dBmO~-40dBmO :-0.1~+0.1dB -40dBmO~-50dBmO :-0.2~+0.2dB -50dBmO~-55dBmO :-0.5~+0.5dB	В норме
7. Общее искажение сигнала	45 dBmO :>20 dB 40 dBmO :>25 dB 30 dBmO :>30 dB 20 dBmO :>35 dB 10 dBmO :>40 dB 0 dBmO :>37 dB	В норме
8. Не взвешенный шум	< -60 dBmO	-66.3 dBmO
Псофометрический взвешенный шум	<-67 dBm :Li <-64 dBm :Lo	-79 dBmO -67 dBmO
10. Абсолютная задержка	< 900 mS < 1500mS с вероятностью 0.95	591 us ~ 1350us
11. TBRL	> + 16dB at 300 - 500Hz > + 20dB at 500 - 2500Hz > +16dB at 2500 - 3400Hz	+22 ~ +33 dB +33 ~ +35 dB +35 ~ +36 dB
12. Ток при разговоре	ASLC 100Ohm (Нагрузка): 30.0mA 200Ohm (Нагрузка): 30.0mA 400Ohm (Нагрузка): 30.0mA 600Ohm (Нагрузка): 30.0mA 800Ohm (Нагрузка): 30.0mA 1200Ohm (Нагрузка): 30.0mA	
13. Потребляемый ток	ASLC +5V : 0.8A на одну плату -5V : 10mA на одну плату -54V : 960mA на одну плату	
14. Расстояние действия	Расстояние действия с использованием AWG 24=1200/176=6.82 км Сопротивление (Включая телефон)=1200 Ом (ток петли = 30 мA)	

Учрежденческо-производственная АТС

STAREX-CS

в Характеристики платы АРТС.

Характеристика	Спецификация	Результат теста
1. Симметрия линии	Более 46 dB	> 60 dB
2. Переходная помеха	< -68 dBm0	< -77 dBmO
3. Затухание отражения	300Hz : > 14dB 500 Hz : > 18dB 2000Hz : > 18dB 3400Hz : > 14dB	21 dB over
4. Измеренный сигнал.	A/D: +3.5dBm (±0.5 dBm) D/A: 0dBm (±0.5 dBm)	± 0.3dBm ±0.3dBm
 Изменение усиления сигнала в зависимости от частоты 	300~400Hz : -0.8 ~+0.5dB 400~600Hz : -0.5 ~+0.5dB 600~2400Hz : -0.3 ~+0.3dB 2400~3000Hz : -0.3 ~+0.3dB 3000~3400Hz : -0.8 ~+0.5dB	В норме
6. Изменение усиления сигнала в зависимости от амплитуды	+3dBmO ~ -40DbmO:-0.1~+0.1dB -40dBmO ~ -50DbmO:-0.2~+0.2dB -50dBmO ~ -55dBmO:-0.5~+0.5dB	В норме
7. Общее искажение сигнала	45 dBmO :>20 dB 40 dBmO :>25 dB 30 dBmO :>30 dB 20 dBmO :>35 dB 10 dBmO :>40 dB 0 dBmO :>37 dB	В норме
8. Не взвешенный шум	< -60 dBmO	-66.0 dBmO
9. Псофометрический взвешенный шум	< -67 dBm : Li <-64 dBm : Lo	-85 dBmO -68 dBmO
10. Абсолютная задержка	< 900 Ms < 1500 mS с вероятностью 0.95	591 □s ~ 1350□
11. TBRL	> + 16dB at 300 – 500Hz > + 20dB at 500 – 2500Hz > +16dB at 2500 – 3400Hz	+30 dB и более +30 dB и более +25 dB и более
12. Сопротивление постоянному току в случае замкнутой цепи постоянного тока.	В случае импульса постоянного тока: 50 ~ 2000hm В случае многочастотного сигнала: 50 ~ 3000hm В случае приема многочастотного сигнала: 50 ~ 5400hm Электростатическая емкость: Менее 2 мкФ	167 ом 237 ом 236 ом 0.2 нФ
13. Сопротивление постоянному току в случае разомкнутой цепи постоянного тока.	Электростатическая емкость: 0.3 ~ 1 мкФ Сопротивление: Более 4 Ком Сопротивление изоляции: Более 1 Мом	0.5 мкФ 12.5 ком 1.5 Гом
14. Спецификация сигнала импульса постоянного тока	Скорость : 10±0.8 импульсов в секунду ТОК ВКЛЮЧЕНИЯ : 33±3% МИНИМАЛЬНАЯ ПАУЗА: Более 600 мс	10.4 импульсов в секунду 33.2 % . 720 мс
15. Спецификация многочастотного сигнала	Уровень (Высокочастотные гармоники): -6±2dBm Уровень (Низкочастотные гармоники): -8±2dBm Время передачи: Более 50 мс. Минимальная пауза: Более 30 мс. Время передачи + минимальная пауза:	- 5.4 dBm - 7.5 dBm 98 мс 101 мс 199 мс
16. Потребляемый ток	более 120 мс Рабочий режим: 0.5 [A] Режим ожидания: 0.3 [A]	
17. Потребляемая мощность	Рабочий режим: 2.5 [W]	

ө Характеристики платы ALTC.

Характеристика	Спецификация	Результат теста
1. Симметрия линии	Более 46 дБ	> 50 дБ
2. Переходная помеха	< -68 dBm0	< -77 dBmO
3. Затухание отражения	300Hz : > 14dB 500 Hz : > 18dB 2000Hz : > 18dB 3400Hz : > 14dB	15.15 dB 20.84 dB 40.36 dB 26.38 dB
4. Измеренный сигнал.	A/D: 0dBm (±0.5 dBm) D/A: 0dBm (±0.5 dBm)	±0.3dBm ±0.3dBm
5. Изменение усиления сигнала в зависимости от частоты	300~400Hz : -0.8 ~ +0.5dB 400~600Hz : -0.5 ~+0.5dB 600~2400Hz : -0.3 ~+0.3dB 2400~3000Hz : -0.3 ~+0.3dB 3000~3400Hz : -0.8 ~+0.5dB	В норме
6. Изменение усиления сигнала в зависимости от амплитуды	+3dBmO ~ -40dBmO :-0.1~+0.1dB -40dBmO ~ -50dBmO :-0.2 ~ +0.2dB -50dBmO ~ -55dBmO :-0.5 ~ +0.5dB	В норме
7. Общее искажение сигнала	45 dBmO :>20 dB 40 dBmO :>25 dB 30 dBmO :>30 dB 20 dBmO :>35 dB 10 dBmO :>40 dB 0 dBmO :>37 dB	В норме
8. Не взвешенный шум	< -60 dBmO	-66.0 dBmO
9. Псофометрический взвешенный шум	< -67 dBm : Li < -64 dBm : Lo	-79 dBmO -67 dBmO
10. Абсолютная задержка	< 900 мс < 1500mS с вероятностью 0.95	591 мс ~ 1350 мс
11. TBRL	> + 16dB at 300 – 500Hz > + 20dB at 500 – 2500Hz > +16dB at 2500 – 3400Hz	+19 dB и более +25 dB и более +23 dB и более
12. Спецификация сигнала импульса постоянного тока	Скорость: 10±0.8 импульсов в секунду ТОК ВКЛЮЧЕНИЯ: 33±3% МИНИМАЛЬНАЯ ПАУЗА: более 600 мс	10.4 импульсов в секунду 33.2 % 720 мс
13. Спецификация многочастотного сигнала	Уровень (Высокочастотные гармоники): -6±2dBm Уровень (Низкочастотные гармоники): -8±2dBm Время передачи: более 50 мс. Минимальная пауза: более 30 мс Время передачи + минимальная пауза: более 120 мс	- 5.4 dBm - 7.5 dBm 98 мс 101 мс 199 мс
14. Потребляемый ток	5 [W]	2.5 W

θ Характеристики платы DSLC-LGP.

Характеристика	Спецификация	Результат теста
1. Качество контактов	Толщина позолоты: более 0.254 мкм	0.56 мкм
2. Сопротивление изоляции	Более 200 Мом	500 Гом
3. Длина абонентской линии	При напряжении —48 В: 800 м	
4. Потребление	Ток: 0.9A (-48V) = 43.2 Вт макс. (длина линии 8	00 м), 16 портов

θ Характеристики платы DSLC-LKD.

Характеристика	Спецификация	Результат теста
1. Качество контактов	Толщина позолоты: более 0.254 мкм	0.56 мкм
2. Сопротивление изоляции	Более 200 мОм	500 Гом
3. Длина абонентской линии	При напряжении +30 В : 300 м	
4. Потребление	Ток : 1.3A (+30V) = 39 Вт макс. (длина линии 60	0m), 24 порта.

ө Характеристики платы DNIC (E1, 2048 Кбит/с PRI).

ITU-T, G.703, G.704, G.706, G.775, I.431 ETSI 300 011, TBR4, TBR012, TBR013

Характеристика	Спецификация		Результат теста
1. Скорость передачи данных	2,048 Кбит/с ±50 имп. в мин.		В норме
2. Кодировка сигнала	HDB3		HDB3
3. Номинальное пиковое напряжение сигнала	2.7 В ~ 3.3 В (симметричная пара)	2.907 В ~ 2.643 В (коаксиальная пара)	В норме
4. Форма импульса См. рис. 15 of ITU-T G.703		G.703	В норме
5. Затухание отражения	51 ~ 102 Кгц ≥12 дБ 102 ~ 2048 Кгц ≥18 дБ 2048 ~ 3072 Кгц ≥ 14 дБ		В норме
6. Фазовые дрожания	ITU-T, G703, I.431, TBR B.2.4		В норме

ө Характеристики платы DNIC (Т1, 1544 Кбит/с PRI).

Характеристика	Спецификация	Результат теста
1. Скорость передачи данных	1,544 Кбит/с ±50 имп. в мин	В норме
2. Кодировка сигнала	AMI, B8ZS	AMI, B8ZS
3. Номинальное пиковое напряжение сигнала	2.3 B ~ 3.7 B (симметричная пара)	В норме
4. Форма импульса	См. рис. 10 of ITU-T, G703	В норме
5. Уровень сигнала	При частоте 772 Кгц: 12 ~ 19 dBm При частоте 1544 Кгц: Минимум на дБ ниже уровня сигнала при частоте 772 Кгц	В норме

ө Характеристики платы BRIC с выбором режима S/T.

Характеристика	Спецификация	Результат теста
1. Скорость передачи данных	192 Кбит/с ±100 имп. в мин	В норме
2. Кодировка сигнала	AMI	AMI
3. Форма импульса	Тестовая нагрузка (50 Ω): См. рис.13/ ITU-T I.430	В норме
4. Сопротивления	NT: Cm. puc.11 / ITU-T I.430 TE: Cm. puc. 12 / ITU-T I-430	В норме

7.2 Условия окружающей среды.

- θ Рабочая температура и влажность. Температура и относительная влажность: 0° C ~ 40° C, 20% ~ 80%.
- Температура и влажность при хранении:
 Температура и относительная влажность:
 -15°C ~ 70°C, 10% ~ 95 %.

7.3 Сигналы и типы терминалов.

В состав системы могут входить самые различные терминалы. Это могут быть однолинейные телефоны; терминалы специального назначения, например, Housephone, телефон DTE и пр.; терминалы, использующие специальные функции, недоступные для одноканальных телефонов, например различные телефоны типа «key-phone» и цифровые телефонные аппараты, например LGP-210 и пр. Телефоны различных систем соединяются между собой соединительными линиями (транками), которые также соединяют телефонные и коммутирующие системы. Именно с помощью соединительных линий (транков) осуществляется связь между коммутационными системами.

7.4 Абонентское оборудование.

В качестве основного абонентского оборудования, используются два типа телефонных аппаратов, один из которых использует импульсный набор номера, а второй – тональный (DTMF). Частота импульсов при импульсном наборе номера составляет 10 импульсов в секунду, а характеристики самого сигнала приведены в нижеследующей таблице:

Таблица 1. Характеристики сигнала оборудования, использующего импульсный набор.

Тиг	і сигнала	Длительность	Состояние TSB	Состояние	Прим.
Трубка сн	ята	-	Высокое	Ожидание, разговор	
Импульс	Импульс	32 мс	Низкое	Набор цифры	
	Пауза	64 мс	Высокое		
Цифровое	е окончание	200 мс	Высокое	Набор цифры	
Межцифр	овая пауза	8 сек	Высокое	Набор цифры	
Отбой вы	зова	128-960 мс	Низкое	-	
Трубка по	ложена	> 960 мс	Низкое	-	

Телефон DTMF является терминальным оборудованием абонента, которое осуществляет набор номера с использованием тонального многочастного сигнала, являющегося комбинацией 8-ми частот, на основании международного ITU-T, характеристики которого приведены в Таблице 4.

7.5 Системные тональные сигналы.

Слышимые тональные сигналы используются в системе для того, чтобы информировать абонента о различных состояниях системы, например, набор номера, ожидание ответа, переадресация вызова и т.п., на основании набора сервисных услуг для абонента, приведенных в нижеследующей таблице:

Таблица 3. Спецификация тональных сигналов (Корейская версия).

	. ,	
Тип сигнала	Частота (Гц)	Скорость переключения, с
Мелодия	300 ~ 3400	Непрерывный сигнал
Ответ станции	350 + 440	1 / 0.25
Сигнал сбоя линии	480 + 620	0.3 / 0.2
Сигнал «занято»	480 + 620	0.5 / 0.5
Сигнал «КПВ»	440 + 480	1/2
Сигнал «вставка КПВ»	440 + 480	Непрерывный сигнал
Сигнал ожидания ответа	440	0.1 / 0.1
Сигнал второго ответа станции	350 + 440	Непрерывный сигнал
Сигнал вмешательства в разговор	420 + 440	0.25 / 0.5
Сигнал подтверждения	392 493 597	Непрерывный сигнал
Сигнал об отключении абонента	3050	0.5 / 0.5

Таблица 4. Спецификация тональных сигналов телефона DTMF.

Тип си	гнала	Длительность	Состояния TSB	Входящий вызов	Прим.
Входящий звон	ЮК	> 500 MC	Высокое	Свободен	
Прекращение і	вызова	5 c	Низкое	Звонок	
Защитный инте	ервал	1 c	Не важно	Защитный интервал	
Исходящий импульсный сигнал	Сигнал	32 мс	Низкое	Набор номера	
	Перерыв	64 мс	Высокое		
	Пауза	640 мс	Высокое		

Лини связи (транки) служат для соединения линий, использующих разные сигнальные протоколы: линий С.О. (центрального офиса), L/D (шлейфного набора номера), двух- и четырехпроводных линий E&M и линий полевого телефона R/D. Типы сигналов и характеристики каждого терминала приведены в нижеследующих таблицах:

Таблица 5. Характеристики сигнала линии С.О.

Тип си	гнала	Длительность	Состояния TSB	Входящий вызов	Прим.
Входящий выз	ОВ	> 500 MC	Высокое	Свободен	
Прекращение	вызова	5 c	Низкое	Звонок	
Защитный инт	ервал	1 c	Не важно	Защитный интервал	
Mayanguuğ	Сигнал	32 мс	Набор номера		
Исходящий набор	Перерыв	64 мс	Высокое	Набор номера	
Паоор	Пауза	640 мс	Высокое		

Таблица 6. Характеристики сигнала L/D.

Тип сигнала	Длительность	Сост. TSB	Состояние	Прим.
Входящий вызов	-	Высокое	Свободен	
Импульсный набор	Тоже, что для импульсного набора			
Цифровое окончание	200 мс	Высокое	Набор	
Исходящий набор	Тоже, что для линии С.О.			
Межцифровая пауза	8 c	Высокое	Набор	
Отбой	> 100 MC	Низкое	-	

Таблица 7. Характеристики сигнала R/D.

. acoming apam opmormum om same					
Тип	сигнала	Длительность	Сост. TSB	Состояние	Прим.
Вызов		> 500 MC	Высокое	Свободен	
Моуолдина	Включение	1 c	Высокое		
Исходящие импульсы	Выключение	1 c	Низкое	Набор	
VIIII Y Y I BOBI	Кол-во включений	Дважды			
Защитный интерв	зал	1 c	Не важно	-	

Таблица 8. Характеристики сигнала Е&М.

Тип с	сигнала	Длительность	Сост. TSB	Состояние	Прим.
Занятие		64 мс	Высокое	Свободен	
Подтверждение		64-112 мс	Высокое	Свободен	
Ожидание подтве	ерждения занятия	2 c	Низкое		
	Импульс	32 мс	Высокое		
Исходящий	Перерыв	64 мс	Низкое	Набор	
набор	Пауза	640 мс	Высокое	Т	
Межцифровая па	уза	8 c	Высокое	Набор	
Отбой вызывающего		1 c	Низкое	-	
Отбой вызываемого		1 c	-	-	
Сигнал ответа с линии абонента		200 мс	-	-	
Отбой		350 мс	-	-	

STAREX-CS

7.6 Спецификация интерфейсов терминалов.

θ LGP-210.

- Функции.
 - > Голосовая связь и обмен данными.
 - > Набор номера из памяти.
 - > Прямой вызов станции.
 - ➤ Световая индикация сигнала «занято».
 - > Программируемое управление функциями.
 - Возможность разговаривать, не снимая трубку.
 - > Задержка, переадресация вызова и т.п.

• Интерфейс.

- ➤ Протокол, ориентированный на систему STAREX-CS.
- Дуплексная связь 144 Кб/с по витой паре с использованием протокола ТСМ.
- Кодировка АМІ.
- ▶ Длина кабеля до 600 м (с использованием кабеля 24 AWG).
- > Соединение с платы DSLC-LGP.

• Дисплей и клавиатура.

- Жидкокристаллический дисплей 24 x 2 символа.
- > 24 программируемые и 14 функциональных клавиш.

θ LGP-DSS.

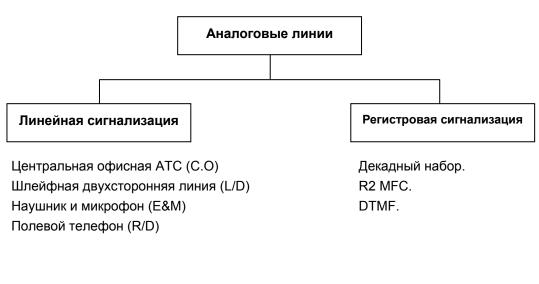
- Функции.
 - Прямой вызов станции.
 - > Световая индикация сигнала «занято».

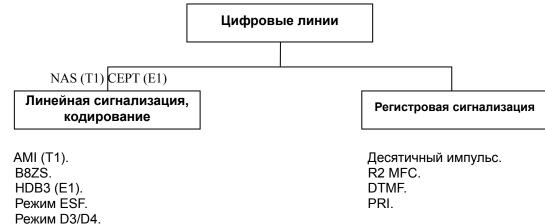
• Интерфейс.

- > Протокол, ориентированный на систему STAREX-CS.
- Дуплексная связь 144 Кб/с по витой паре с использованием протокола ТСМ.
- Кодировка АМІ.
- ▶ Длина кабеля до 600 м (с использованием кабеля 24 AWG).
- ➤ Соединение с платы DSLC-LGP.
- Дисплей и клавиатура.
 - > 45 светодиодов и клавиш.

STAREX-CS

- в Консоль оператора.
 - Функции.
 - > Ответ на входящие вызовы.
 - > Функция вмешательства в разговор.
 - > Задержка и переадресация вызова.
 - > Режим конференции.
 - > Автоматический повтор набора номера.
 - > Регистрация функции будильника для абонентов.
 - ▶ Проверка/Слуховой мониторинг помещения/DND.
 - Световая индикация сигнала «занято».
 - Интерфейс.
 - > Протокол, ориентированный на систему STAREX-CS.
 - ➤ Соединение с платы DSLC-LGP (Цифровой ATD).
- θ Дополнительно подключаемое оборудование.
 - Система пейджинга.
 - Функции.
 - > Пейджинг индивидуального абонента.
 - > Пейджинг группы абонентов.
 - > Пейджинг всех абонентов.
 - Плата интерфейса.
 - > APTC.
 - > ALTC (L/D).
 - Характеристики сигнала интерфейса.
 - > DTMF.
 - > Импульсный набор номера.
- ө МОН (музыка для вызова на удержании) и фоновая музыка.
 - Функции.
 - > Служба оповещения.
 - Плата интерфейса.
 - > APTC.
 - > ASLC.

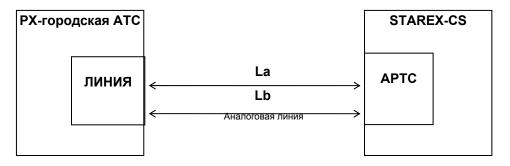

STAREX-CS


- θ SMDR и PMS (система тарификации).
 - Функции.
 - > Стоимость вызова.
 - > Функция будильника.
 - > Функция вызова горничной.
 - > Функция мини-бара.
 - > Функция отключения комнаты (аппарата).
 - Интерфейс.
 - ▶ Подключение с разъема 4 платы IOTU к задней стороне MMB.
 - ▶ Разъем RS-232C (V.24).
 - ▶ Протокол: 8 бит, 1 стоповый бит, нет контроля по четности, 19200 б/с.
 - ▶ Протокол CS1000-PMS.
- ө VMS (интерфейс голосовой почты).
 - Функции.
 - > Стоимость вызова.
 - > Функция будильника.
 - > Функция вызова горничной.
 - > Функция мини-бара.
 - > Функция отключения комнаты (аппарата).
 - Интерфейс.
 - ➤ Соединение с платы IOT2.
 - ▶ Разъем RS-232C (V.24).
 - Протокол: 8 бит, 1 стоповый бит, нет контроля по четности, 19200 б/с.
 - ▶ Внешний протокол интерфейса голосовой почты CS1000.

7.7 Линейная сигнализация.

Линейная сигнализация системы STAREX-CS подразделяется на аналоговые и цифровые сигналы в зависимости от технологии передачи сигнала. Кроме этого, она подразделяется на управляющие сигналы (для захвата и освобождения линий) и информационные сигналы (для передачи данных).

В данном параграфе объясняются сигналы, используемые в системе STAREX-CS.



STAREX-CS

7.8 Спецификация линий центрального офиса (С.О.).

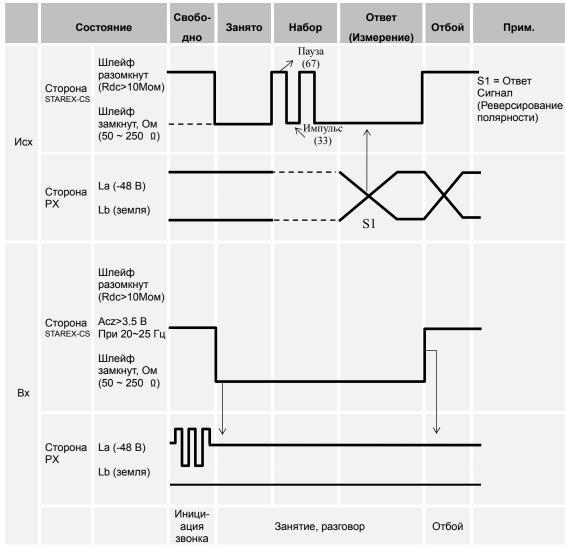
ө Подключение соединительной линии.

θ Информационные сигналы.

Входящий	Исходящий	Тарификация
Звонок	Импульсный набор DTMF	Нет сигналов. Реверсирование полярности. Тональный сигнал (50 гц, 12 Кгц, 16 Кгц).

ө Прохождение сигнала (С.О).

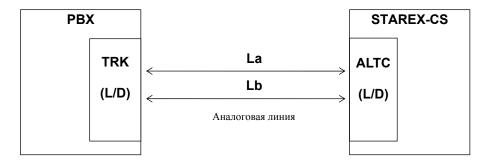
<Bходящий сигнал: PX ☐ STAREX-CS>


Сигнал/Состояние	Направление	Статус линии	Примечание
Свободно		a. b Линия свободна.	Высокое 10 Мом
Звонок		Определение вызова.	АС 3.5 КОм
			20 Гц ~ 25 Гц
Занято	←	a. b Шлейф замкнут.	Низкое = 50 ~ 250
Ответ			Ω
Отбой			(Тарификация)
Обратный отбой	———	a. b Шлейф разомкнут.	
,			Высокое 10 Мом

STAREX-CS

θ Выходящий сигнал: РХ □ STAREX-CS

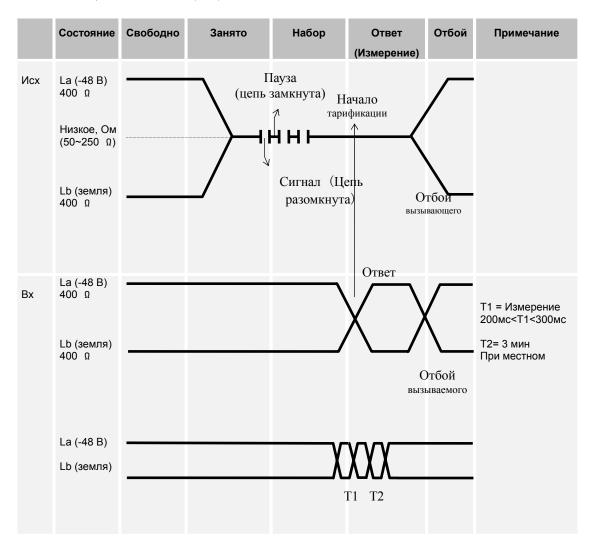
Сигнал/состояние	Направление	Статус линии	Примечание
Свободно Занятие	<u> </u>	а. b Шлейф разомкнут а. b Шлейф замкнут	Высокое 10 Мом Низкое = 50~250 Ω
Импульсный набор	•	Пауза: разомкнут. Импульс: замкнут.	Отношение импульс/пауза 33:67 %
Ответ Отбой вызывающего Отбой вызываемого		а. b Шлейф замкнут а. b Шлейф разомкнут а. b Шлейф замкнут	<Тарификация>


ө Диаграмма сигнала (С.О.).

STAREX-CS

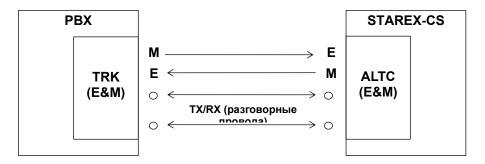
7.9 Спецификация линий шлейфного набора (L/D).

в Соединение с соединительной линией.

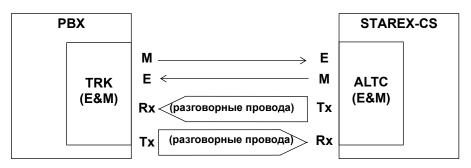

ө Информационные сигналы.

Входящий	Исходящий	Тарификация
Декадный набор DTMF R2 MFC	Декадный набор DTMF R2 MFC	Реверсирование полярности.

ө Прохождение сигнала (L/D).


Сигн/сост.	Выходящая сторона	Направление	Входящая сторона	Примечание
Свободен	A = -48 B (400 Ω) B = земля (400 Ω)		A = -48 B (400 Ω) B = земля (400 Ω)	Низк.= 50~250Ω Высокое=10 МΩ
Занятие	а, b замкнуто Низкое сопр. = 50~250 Ω		A = -48 B (400 Ω) B = земля (400 Ω)	
Набор	а,b замкнуто Сигнал: замкнуто Пауза: разомкнуто		A = -48 B (400 Ω) B = земля (400 Ω)	Импульс: 33 Пауза: 67
Ответ	а,b замкнуто		A = земля (400 Ω) B = -48 B (400 Ω)	
Отбой вызывающего	A = -48 B (400 Ω) B = земля (400 Ω)		A =-48 B (400 Ω) B = земля (400 Ω)	
Отбой вызываемого	A =-48 B (400 Ω) B = земля (400 Ω)	•	A = -48 B (400 Ω) B = земля (400 Ω)	

ө Диаграмма сигнала (L/D).



7.10 Спецификация линий "наушник и микрофон" (Е&М).

Подключение к соединительной линии.
 Вариант 1) E&M 2-провода.

Вариант 2) Е&М 4-провода.

ө Информационные сигналы.

Входящий	Исходящий	Тарификация
Декадный набор DTMF R2 MFC	Декадный набор DTMF R2 MFC	Сигнал ответа

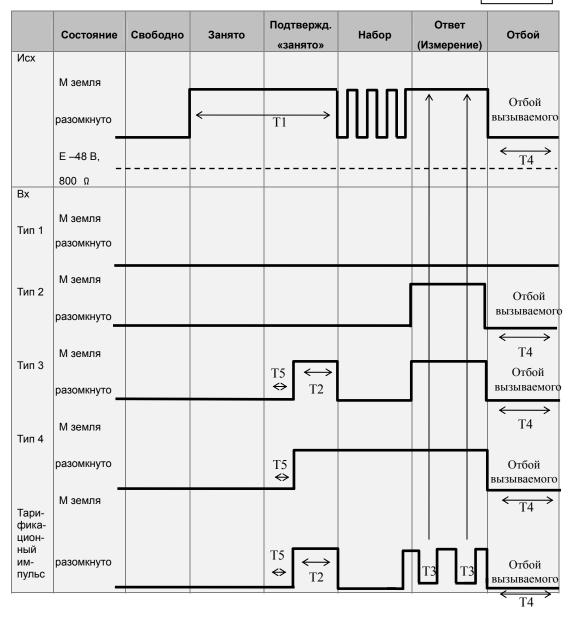
Прохождение сигнала (Е&М).

θ Непрерывный Е&М.

Сигн/сост.	Выходящая сторона	Направление	Входящая сторона	Примечание
Свободен	M = разомкнуто E = -48 B (800 Ω)		M = разомкнуто E = -48 B (800 Ω)	
Занятие	M = земля (Т1) E = -48 B (800 Ω)		M = разомкнуто E = -48 B (800 Ω)	Т1=Длительность сигнала занятия
Подтверж- дение занятия»	М = земля E = -48 B (800 Ω)		M = земля (T2) E = -48 B (800 Ω)	T2=Длительность подтверждения сигнала занятия
Набор номера	М = земля E = -48 B (800 Ω) Сигнал = М земля Пауза = М разомкнуто	→	M = разомкнуто E = -48 B (800 Ω)	Импульс: 33 Пауза:67 (См. диаграмму сигнала)
Ответ	М = земля E = -48 B (800 Ω)	←	M = земля E = -48 B (800 Ω)	
Тарифика- ционные импульсы	М = земля E = -48 B (800 Ω)	←	M = земля (Т3) E = -48 B (800 Ω)	Т3=Тарификация импульса
Отбой вызываю- щего	M = разомкнуто E = -48 B (800 Ω)		M = земля E = -48 B (800 Ω)	Только в случае PBX
Отбой вызывае- мого	M = разомкнуто E = -48 B (800 Ω)		M = разомкнуто E = -48 B (800 Ω)	

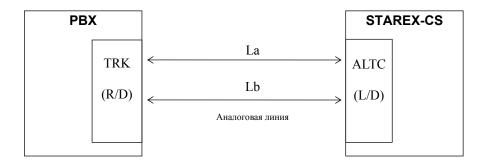
Временные параметры сигнала Е&М.

ө Продолжительный Е&М.


Nº	Значение	Входящее	Исходящее
T1	Длительность сигнала занятия	64 ~ 400 мс	128 мс (*П)
T2	Длительность подтверждения сигнала занятия	64 ~ 400 мс	128 мс (*П)
Т3	Длительность времени тарификационного импульса	64 ~ 400 мс	128 мс (*П)
T4	Время отбоя	Более 640 мс	Более 800 мс
T5	Время ожидания сигналя подтверждения занятия	Немедленно	около 500 мс (*П)

ПРИМЕЧАНИЕ. 'П' обозначает программируемый временной параметр системы.

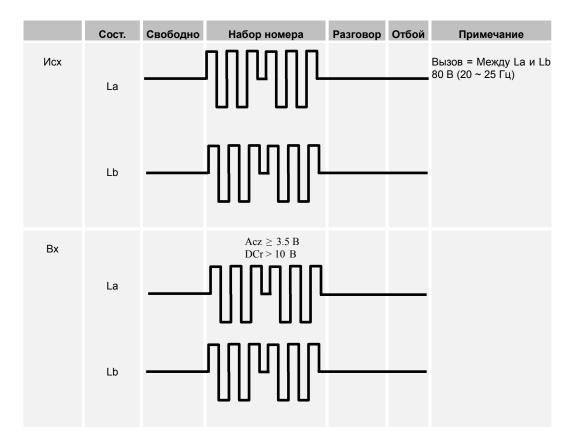
Диаграмма сигнала.


ө Продолжительный Е&М.

 $\begin{array}{c} \mathsf{M} \to \mathsf{E} \\ \mathsf{E} \leftarrow \mathsf{M} \end{array}$

7.11 Спецификация линий полевого телефона (R/D).

ө Подключение соединительной линии.


ө Информационный сигнал.

Входящий	Исходящий	Тарификация
Вызов	Вызов	Нет

ө Прохождение сигнала.

Сигн./сост.	Выходящий	Направление	Входящий	Примечание
Свободен	a.b шлейф разомкнут		а.b шлейф разомкнут b=GND (400Ω)	Разомкнуто = Высокое сопротивление (10 Мом)
Занятие (вызов)	а.b шлейф замкнут (Инициация вызова)		а.b шлейф разомкнут (Обнаружение вызова)	Замкнуто = низкое сопротивление $(50 \sim 250 \Omega)$ Подтв. 3.5 КОм Вызов = 80 В $(20 \sim 25 \Gamma \mathrm{L})$
Ответ	а.b шлейф замкнут	-	а.b шлейф замкнут	
Отбой вызывающего	a.b шлейф разомкнут		а.b шлейф замкнут	
Отбой вызываемого	a.b шлейф разомкнут		а.b шлейф разомкнут	

ө Диаграмма сигнала (R/D).

7.12 Спецификация регистровых сигналов.

θ Декадный набор.

Импульсы	Входящий	Исходящий
Частота импульсов	7 ~ 13 имп. в сек.	10 имп. в сек.
Длительность импульса	30 ~ 90 мс	32 мс
Длительность паузы	30 ~ 100 мс	64 мс
Пауза между цифрами	Более 300 мс	600 ~ 700 мс

ө Информационный сигнал DTMF (ITU-T стандарт Q23, Q24, Q25).

• Группа высоких частот.

Гц	1209	1336	1477	1633
697	1	2	3	Α
770	4	5	6	В
852 941	7	8	9	С
941	*	0	#	D

Кодировки: A,B,С и D зарезервированы.

• Группа низких частот.

Сигнал DTMF	Входящий (Принимаемый)	Исходящий (Посылаемый)
Минимальная продолжительность сигнала	40 мс	100 мс
Минимальная продолжительность паузы	50 мс	100 мс
Уровень сигнала	-32 дБ/Уровень < -2 дБ	-8.5 ~ -6.5 дБ
Отношение уровней частот	= Высокая частота = <10 дБ Низкая частота	24 дБ
Отклонение частоты	1.8 %	1 %

ө Информационный сигнал RMFC.

В соответствии со стандартом ITU-T, назначены 6 частот в прямом направлении и 5 частот в обратном направлении:

	Частота (Гц)				
	Сигналы прямого направления	Сигналы обратного направления			
f0	1380	1140			
f1	1500	1020			
f2	1620	900			
f3	1740	780			
f4	1860	660			
f5	1980	X			

• Комбинирование сигналов различных частот.

Используя сигналы 2 различных частот, можно создать комбинированный МFС (многочастотный) сигнал. Следовательно, при использовании 6 исходящих частот (сигналы прямого направления), можно создать 15 многочастотных сигналов, а при использовании 5 входящих частот (сигналы обратного направления), можно создать 10 многочастотных сигналов. См. на следующей странице 'Таблица конфигурации многочастотных сигналов'.

- Значение сигнала.
 - > Исходящий сигнал.
 - > Входящий сигнал.
- ө Передача многочастотного сигнала.
 - Передача сигнала.
 - Прием сигнала.

• Таблица конфигурации многочастотных сигналов.

K	ОД	Частота							
		Прямое направление (Группа I&II)	1380	1500	1620	1740	1860	1980	
Nº	x+y	Обратное направление (Группа A&B)	1140	1020	900	780	660		
		Индекс (х)	f0	f1	f2	f3	f4	f5	
		Bec (y)	0	1	2	4	7	11	
1	0+1		x	У					
2	0+2		x		у				
3	1+2			x	у				
4	0+4		x			У			
5	1+4			x		У			
6	2+4				x	У			
7	0+7		x				у		
8	1+7			x			у		
9	2+7				x		у		
10	3+7					x	у		
11	0+11		x					у	
12	1+11			x				у	
13	2+11				x			у	
14	3+11					x		у	
15	4+11						x	у	

• Спецификация многочастотных сигналов (Корейская версия).

	Сигналы прям	ого направления	Сигналы обратного направления					
	Группа І	Группа II	Группа А	Группа В				
1	Цифра 1	Абонент без приоритета	Посылка следующей цифры (n+1)	Вызываемый абонент свободен				
2	Цифра 2	Абонент с приоритетом	Посылка последней цифры (n-1)	Вызываемый абонент занят				
3	Цифра 3	Проверка линии (обслуживание оборудования)	Набор номера завершен, начать обработку сигнала группы В	Вызываемый абонент занят				
4	Цифра 4	Таксофон	Сбой в национальной сети	Зафиксирован сбой при переходе сигнала группы А к сигналу группы В				
5	Цифра 5	Оператор	Переслать категорию абонента	Номер не определен				
6	Цифра 6	Передача данных	Набор номера завершен, связь установлена	Вызываемый абонент свободен, идет оплата				
7	Цифра 7	Международный звонок	Посылка двух последних цифр (n-2)	Вызываемый абонент свободен, оплата не идет				
8	Цифра 8	Международный звонок	Посылка трех последних цифр (n-3)	Телефон вызываемого абонента неисправен или входящие звонки на него запрещены				
9	Цифра 9	Международный звонок	Посылка первой цифры набираемого номера	Вызываемый абонент свободен, оплата не идет				
10	Цифра 0	Международный звонок						
11								
12								
13	Доступ к тестовому оборудованию							
14								
15	Окончание набора номера							

• Спецификация многочастотного сигналов (стандарт ITU-T R2).

	Сигналы прямого направления		Сигналы обратного направления				
	Группа І	Группа II	Группа А	Группа В			
1	Цифра 1	Абонент без приоритета	Посылка следующей цифры (n+1)				
2	Цифра 2	Абонент с приоритетом	Посылка последней цифры (n-1)	Посылка специального информационного сигнала			
3	Цифра 3	Проверка линии (обслуживание оборудования)	Набор номера завершен, начать обработку сигнала группы В	Вызываемый абонент занят			
4	Цифра 4		Сбой в национальной сети	Зафиксирован сбой при переходе сигнала группы А к сигналу группы В			
5	Цифра 5	Оператор	Переслать категорию абонента	Номер не определен			
6	Цифра 6	Передача данных	Набор номера завершен, связь установлена	Вызываемый абонент свободен, идет оплата			
7	Цифра 7	·	Посылка двух последних цифр (n-2)	Вызываемый абонент свободен, оплата не идет			
8	Цифра 8	Передача данных	Посылка трех последних цифр (n-3)	Вызываемый номер неисправен			
9	Цифра 9	Абонент с приоритетом					
10	Цифра 0	Оператор имеет доступ к функции переадресации звонка					
11	Доступ и оператору входящего звонка	Ċ	Посылка идентификатора кода страны				
12	Доступ поператору задержки	¢	Посылка идентификатора языка				
13	Доступ і тестовому оборудованию		а) Посылка характеристик линии b) посылка места нахождения вызываемого международного абонента в регистр R2				
14	Запрос на включение эхозаградителя		Запрос на включение эхозаградителя				
15	Окончание набора номера		Сбой в международной сети или на ее выходе				

7.13 Спецификация сигналов цифровой линии (DNIC-E1).

в Общее описание DNIC-E1.

Настоящие технические требования описывают обмен данными между системой STAREX-CS с помощью 2-битовой цифровой соединительной линии на скорости 2.048 Мб/с и PTSN.

Сигнал кодируется по стандарту HDB3 (Высокоплотная биполярная кодировка 3). Интерфейс обмена данными со скоростью 2.048 Mб/с (DNIC-E1)

(2.048 M +/- 50 ppm) отвечает следующим стандартам ITU-T:

G.703 (Физический интерфейс);

G.704 (Функциональный интерфейс);

G.705 (Передающий интерфейс);

G.732 (Мультиплексор 2048 Кбит/c).

Сигнальные биты являются временными интервалами каждого цикла РСМ. (См. стандарт ITU).

Формат каждого цикла состоит из 32 временных интервалов. Внутри цикла (32 временных интервала), 30 каналов являются голосовыми каналами (для разговора).

Временные интервалы 1-15 и 17-31 соответствуют голосовым каналам 1-30. 8битовая метка в 16-м временном интервале в каждом цикле содержит управляющие сигналы для двух каналов в нижеследующем формате.

8-битовая метка в 0-м временном интервале каждого цикла содержит информацию для синхронизации потоков данных.

Временной	Временной интервал 16	•••	Временной интервал 16
интервал в цикле 1			в цикле 15
в цикле 0			
0000 XXXX	ABCD биты для ABCD биты для канала 1 (T/S 1) канала 16 (T/S 17)		ABCD биты для ABCD биты для канала 15 (T/S 15) канала 30 (T/S 31)

Af: Исходящий бит а. Bf: Исходящий бит b. Ab: Входящий бит а. Bb: Входящий бит b.

θ Описание кодировки сигнала цифровой линии.

В цифровой линии существуют два типа сигнала – исходящий и входящий сигнал для каждого канала.

Сигнал линии посылается или принимается через биты Af и Bf для исходящего сигнала, и биты Ab и Bb для входящего сигнала.

Исходящий :

	-	CH1		-	-	CH16)
A	В	С	D	A	В	С	D

Af : Состояние исходящего коммуникационного оборудования и состояние линии вызываемого абонента.

Bf: Для сигнализации о сбое сигнала к исходящему коммуникационному оборудованию.

Cf: 0 Df: 1

Входящий:

CH1					_	CH16	
A	В	С	D	A	В	С	D

Ab: Состояние линии вызываемого абонента. Снята или положена трубка.)

Bb: Состояние исходящего коммуникационного оборудования (свободно или занято).

Cb: 0 Db: 1

Примечание. Неиспользуемые биты имеют значение 0 или 1.

В приведенной ниже таблице показана детальная информация, связанная с сигнальным протоколом, используемым цифровым интерфейсом соединительной линии (транка) (DNIC-E1).

в Временные характеристики.

Сигнал	Значение	Примечания
- Занятие (Исходящий сигнал)	150 мс	Изменяемое
- Занятие (Входящий Сигнал)	96 мс	
- Ожидание подтверждения сигнала занятия	1800 мс	Изменяемое
- Длительность сигнала (импульсный набор)	32 мс	
- Длительность паузы (импульсный набор)	64 мс	
- Пауза между цифрами (импульсный набор)	800 мс	
- Ответ	200 мс	
- Отбой вызывающего	200 мс	
- Отбой вызываемого	200 мс	
- Длительность защитного интревала	640 мс	

Примечание: В соответствии с требованиями клиента, значения временных параметров могут изменяться.

ө Входящие звонки на PBX через линию прямого внутреннего вызова (DID).

PX=> PBX		2-битный сигнал				
Сигнал линии	Направление	> Исходящий Af Bf		< Входящий Ab Bb		
Свободен		1	0	1	0	
Занятие	\longrightarrow	1	0	0	0	
Подтверждение занятия		1	1	0	0	
Декадный импульс: Пауза		1	1	1	0	
(см. примечание 1) Сигнал		1	1	0	0	
Ответ		0	1	0	0	
Вызываемая сторона		1	1	0	0	
освобождает линию первой						
Вызывающая сторона		0	1	1	0	
освобождает линию первой	,					
Вызывающая сторона освобождает линию первой и пере-	\longrightarrow	1	0	1	0	
ходит в состояние «свободно»						
Линия освобождается одновре-		1	1	1	0	
менно, вызывающий переходит						
в состояние «свободно»						
Свободнен		1	0	1	0	

Примечание 1. Бит 'Сигнал/Пауза' следует за нормальной последовательностью десятичного импульса с частотой 10 импульсов в секунду.

в Исходящие звонки из PBX через линии прямого внешнего вызова (DOD).

DV-> DDV		2-битный сигнал >			
РX=> PBX Сигнал линии	Направление		<i>></i> ящий Вf	•	 цящий Bb
Свободен		1	0	1	0
Занятие	——	1	0	0	0
Подтверждение занятия		1	1	0	0
Декадный импульс: Пауза		1	1	1	0
(см. примечание 1) Сигнал		1	1	0	0
Ответ	→	0	1	0	0
Вызываемая сторона		1	1	0	0
освобождает линию первой					
Вызывающая сторона	\longrightarrow	0	1	1	0
освобождает линию первой					
Вызывающая сторона освобо-		1	0	1	0
ждает линию первой и пере- ходит в состояние «свободно»					
Линия освобождается одновре-	──	1	1	1	0
менно, вызывающий переходит					
в состояние «свободно»					
Свободен		1	0	1	0

Примечание 1. Бит 'Сигнал/Пауза' следует за нормальной последовательностью десятичного импульса с частотой 10 импульсов в секунду.